Biotic stress is one of the major threats to stable rice production. Climate change affects the shifting of pest outbreaks in time and space. Genetic improvement of biotic stress resistance in rice is a cost-effective and environment-friendly way to control diseases and pests compared to other methods such as chemical spraying.
View Article and Find Full Text PDFBackground: Thailand is a country with large diversity in rice varieties due to its rich and diverse ecology. In this paper, 300 rice accessions from all across Thailand were sequenced to identify SNP variants allowing for the population structure to be explored.
Results: The result of inferred population structure from admixture and clustering analysis illustrated strong evidence of substructure in each geographical region.
The Asian rice gall midge (RGM) Orseolia oryzae (Wood Mason) (Diptera: Cecidomyiidae) is a major pest of rice, leading to yield losses in Thailand and many Asian countries. Despite an increasing number of reported midge outbreaks and the presence of many susceptible rice varieties, only a few studies have focused on the genetic variation of the midges. Therefore, we analyzed the phylogeography among Thai RGM populations covering north, northeast and central Thailand.
View Article and Find Full Text PDFHost plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1.
View Article and Find Full Text PDF