The use of highly potent but very toxic antibiotics such as colistin has become inevitable due to the rise of antimicrobial resistance. We aimed for a chemically-triggered, controlled release of colistin at the infection site to lower its systemic toxicity by harnessing the power of click-to-release reactions. Kinetic experiments with nine tetrazines and three dienophiles demonstrated a fast release via an inverse-electron-demand Diels-Alder reaction between trans-cyclooctene (TCO) and the amine-functionalised tetrazine Tz7.
View Article and Find Full Text PDFHemiasterlin is an antimitotic marine natural product with reported sub-nanomolar potency against several cancer cell lines. Herein, we describe an expeditious total synthesis of hemiasterlin featuring a four-component Ugi reaction (Ugi-4CR) as the key step. The convergent synthetic strategy enabled rapid access to taltobulin (HTI-286), a similarly potent synthetic analogue.
View Article and Find Full Text PDFHerein, we describe the development of a novel staple with an electrophilic warhead to enable the generation of stapled peptide covalent inhibitors of the p53-MDM2 protein-protein interaction (PPI). The peptide developed showed complete and selective covalent binding resulting in potent inhibition of p53-MDM2 PPI.
View Article and Find Full Text PDF