ACS Appl Mater Interfaces
February 2025
Improving electrical conductivity and increasing the active site are important directions for improving the technology of manganese-based cathode materials for zinc ion batteries (ZIBs). In this paper, cobalt-doped and oxygen-vacancy coupled MnO nanorods (V-CMO) were prepared by defect engineering and an ion doping strategy as cathode materials for rechargeable ZIBs. Oxygen vacancies can increase the defect density of the material and provide more migration paths for zinc ions, thereby increasing the electrochemical activity and improving the specific capacity.
View Article and Find Full Text PDFThe advancement of rechargeable Mg-metal batteries (RMBs) is severely impeded by the lack of suitable cathode materials. Despite the good cyclic stability of intercalation-type compounds, their specific capacity is relatively low. Conversely, the conversion-type cathodes can deliver a higher capacity but often suffer from poor cycling reversibility and stability.
View Article and Find Full Text PDFAiming at the key problem of Na insertion difficulty and low charge transfer efficiency of activated carbon materials. It is an effective strategy to increase the lattice spacing and defect concentration by doping to reduce the ion diffusion resistance and improve the kinetics. Hence, anthracitic coal is used to prepare activated carbon (AC) and B,P-doped activated carbon (B,P-AC) as the cathode and anode materials for high-performance all-carbon SICs, respectively.
View Article and Find Full Text PDFRechargeable magnesium batteries (RMBs) show great potential in large-scale energy storage systems, due to Mg with high polarity leading to strong interactions within the cathode lattice, and the limited discovery of functional cathode materials with rapid kinetics of Mg diffusion and desirable cyclability retards their development. Herein, we innovatively report the confined synthesis of VS/polyaniline (VS/PANI) hybrid nanosheets. The VS/PANI hybrids with expanded interlayer spacing are successfully prepared through the exfoliation of VS and in situ polymerization between VS nanosheets and aniline.
View Article and Find Full Text PDFLayered double hydroxides (LDHs) have come to the foreground recently, considering their unique layered structure and short ion channels when they act as electrode materials for supercapacitors (SCs). However, due to their poor rate and cycle performance, they are not highly sought after in the market. Therefore, a flower-like hierarchical NiCo-LDH@C nanostructure with flake NiCo-LDH anchored on the carbon skeleton has emerged here, which is constructed by calcination and hydrothermal reaction and applying flake ZIF-67 as a precursor.
View Article and Find Full Text PDFLayered double hydroxides (LDHs) have been intensively investigated as promising cathodes for the new concept chloride ion battery (CIB) with multiple advantages of high theoretical energy density, abundant raw materials and unique dendrite-free characteristics. However, driven by the great compositional diversity, a complete understanding of interactions between metal cations, as well as a synergetic effect between metal cations and lattice oxygen on LDH host layers in terms of the reversible Cl-storage capability, is still a crucial but elusive issue. In this work, we synthesized a series of chloride-inserted trinary Mo-doped NiCo-Cl LDH ( = 0, 0.
View Article and Find Full Text PDFChloride-ion batteries (CIBs) have drawn growing attention in large-scale energy storage applications owing to their comprehensive merits of high theoretical energy density, dendrite-free characteristic, and abundance of chloride-containing materials. Nonetheless, cathodes for CIBs are plagued by distinct volume effect and sluggish Cl diffusion kinetics, leading to inferior rate capability and short cycling life. Herein, an unconventional Ni Ti-Cl LDH is reported with a high nickel ratio as a cathode material for CIB.
View Article and Find Full Text PDFChloride ion batteries (CIBs) have drawn growing attention as attractive candidates for large-scale energy storage technology because of their high theoretical energy densities (2500 W h L), dendrite-free characteristics and abundance of chloride-containing materials available worldwide. However, the further development of CIBs is greatly limited by sluggish Cl diffusion and distinct structural variation of cathode materials, resulting in severe decayed capacity and inferior rate performance. Metal-organic framework (MOF) materials possess regular pores/channels and flexible structural designability to accommodate charge carrier ions, but the application of MOFs in anion-type batteries has not been reported.
View Article and Find Full Text PDFMultivalent ion batteries have attracted great attention because of their abundant reserves, low cost and high safety. Among them, magnesium ion batteries (MIBs) have been regarded as a promising alternative for large-scale energy storage device owing to its high volumetric capacities and unfavorable dendrite formation. However, the strong interaction between Mg and electrolyte as well as cathode material results in very slow insertion and diffusion kinetics.
View Article and Find Full Text PDFManganese-based oxides are common cathode materials for aqueous zinc ion batteries (AZIBs) because of their great capacity and high working voltage. However, the sharp decline of capacity caused by the dissolution of manganese-based cathode materials and the low-rate performance restrict their development. To address these problems, unique core-shell structured MnO@ZnMnO/C hollow microspheres are reported as an ideal cathode material for AZIBs.
View Article and Find Full Text PDFHigh-entropy oxide (HEO) is an emerging type of anode material for lithium-ion batteries with excellent properties, where high-concentration oxygen vacancies can effectively enhance the diffusion coefficient of lithium ions. In this study, Ni-free spinel-type HEOs ((FeCoCrMnZn)O and (FeCoCrMnMg)O) were prepared via ball milling, and the effects of zinc and magnesium on the concentration of oxygen vacancy (O), lithium-ion diffusion coefficient (), and electrochemical performance of HEOs were investigated. Ab initio calculations show that the addition of zinc narrows down the band gap and thus improves the electrical conductivity.
View Article and Find Full Text PDFBenefitting from the abundance and inexpensive nature of potassium resources, potassium-ion energy storage technology is considered a potential alternative to current lithium-ion systems. Potassium-ion capacitors (PICs) as a burgeoning K-ion electrochemical energy storage device, are capable of delivering high energy at high power without sacrificing lifespan. However, owing to the sluggish kinetics and significant volume change induced by the large K-diameter, matched electrode materials with good ion accessibility and fast K intercalation/deintercalation capability are urgently desired.
View Article and Find Full Text PDFPotassium-ion capacitors (PICs) have drawn appreciable attention because PICs can masterly integrate the virtues of the high energy density of battery-type anode and high power density of capacitor-type cathode. However, the sanguine scenario involves the incompatible capacity and sluggish kinetics in the PIC device. Herein, we report the synthesis of nitrogen and phosphorus-doped network porous carbon materials (NPMCs) a self-sacrifice template strategy, which possesses a desired three-dimensional structure and prosperous electrochemical properties for K storage capacity.
View Article and Find Full Text PDFThe large volume expansion and poor electrical conductivity of copper phosphide (CuP) during the cycle limit their further application as anode of lithium-ion batteries. Therefore, polyvinylpyrrolidone (PVP) modified Cu(BTC)-derived (BTC = 1, 3, 5-Benzentricarboxylic acid) in-situ N/P-co-doped Octahedron carbon encapsulated CuP nanoparticles (CuP@NPC) are successfully prepared through a two-step process of carbonization and phosphating. The N/P-co-doped Octahedron carbon matrix improves the conductivity of CuP and moderates the volume expansion during the lithiation/delithiation process.
View Article and Find Full Text PDFFunctionalized carbon nanomaterials are potential candidates for use as anode materials in potassium-ion batteries (PIBs). The inevitable defect sites in the architectures significantly affect the physicochemical properties of the carbon nanomaterials, thus defect engineering has recently become a vital research area for carbon-based electrodes. However, one of the major issues holding back its further development is the lack of a complete understanding of the effects accounting for the potassium (K) storage of different carbon defects, which have remained elusive.
View Article and Find Full Text PDFDesign and fabrication of novel electrode materials with excellent specific capacitance and cycle stability are urgent for advanced energy storage devices, and the combinability of multiple modification methods is still insufficient. Herein, Ni, Zn double-cation-substitution Co carbonate hydroxide (NiZnCo-CH) nanosheets arrays were established on 3D copper with controllable morphology (3DCu@NiZnCo-CH). The self-standing scalable dendritic copper offers a large surface area and promotes fast electron transport.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2021
Growing electroactive materials directly on a three-dimensional conductive substrate can effectively reduce the "ineffective area" of the electrode during the electrochemical reaction, increase the utilization rate of the material, and thus increase the energy density of the device. Using the network structure of the three-dimensional conductive substrate to design electrode materials with unique microstructures can also improve the stability of the materials. In this work, we obtained different copper-based materials on the copper foam (CF) by in-situ growth method, and designed an independent three-dimensional layered CuO@NiCoFe-S (CuO@NCFS) core-shell nanostructure composite material.
View Article and Find Full Text PDFA transition metal phosphide is an excellent candidate for supercapacitors due to its superior electrical conductivity and high theoretical capacity. In addition, compared with traditional 3D nano-materials, 2D nanosheets possess a greater specific surface area and shorter electron transport distance. In this study, a reasonable approach is proposed for the synthesis of ZIF-67 nanosheets on nickel foam with subsequent phosphorization by chemical vapor deposition (CVD) to obtain flake-like CoP combined with Ni2P (NCP/NF), in which nickel foam serves as the current collector as well as the resource of Ni to form Ni2P.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2018
Metal-organic frameworks (MOFs), serving as a promising electrode material in the supercapacitors, have attracted tremendous interests in recent years. Here, through modifying the molar ratio of the Ni and Co, we have successfully fabricated Ni-MOF and Ni/Co-MOF by a facile hydrothermal method. The Ni/Co-MOF with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F g at 1 A g in the three-electrode system.
View Article and Find Full Text PDFA facile method was utilized to convert a common biomass of walnut shells into activated porous carbon by carbonization and activation with nitricacid treatment. The obtained activated carbon (WSs-2) exhibited excellent electrochemical performance with high specific capacitance of 137 F · g-1 at 1 A · g-1 and super cycling performance of 96% capacitance retention at 5 A · g-1 after 5000 cycles. In addition, NiCo2O4 nanoneedle arrays with good electrochemical properties were successfully prepared by a simple hydrothermal method.
View Article and Find Full Text PDFThe solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film.
View Article and Find Full Text PDF