It is difficult for a humanoid leg driven by two groups of antagonistic pneumatic muscles (PMs) to achieve a flexible humanoid gait, and its inherent strong coupling nonlinear characteristics make it hard to achieve good tracking performance in a large range of motion. Therefore, a four-bar linkage bionic knee joint structure with a variable axis and a double closed-loop servo position control strategy based on computed torque control are designed to improve anthropomorphic characteristics and the dynamic performance of the bionic mechanical leg powered by servo pneumatic muscle (SPM). Firstly, the relationship between the joint torque, the initial jump angle and the bounce height of the mechanical leg is established, and then we design a double-joint PM bionic mechanical leg containing a four-bar linkage mechanism of the knee joint.
View Article and Find Full Text PDFAcoustic tweezers can control target movement through the momentum interaction between an acoustic wave and an object. This technology has advantages over optical tweezers for in-vivo cell manipulation due to its high tissue penetrability and strong acoustic radiation force. However, normal cells are difficult to acoustically manipulate because of their small size and the similarity between their acoustic impedance and that of the medium.
View Article and Find Full Text PDFBackground: Diffusion-weighted imaging (DWI) has been considered for chronic liver disease (CLD) characterization. Grading of liver fibrosis is important for disease management.
Purpose: To investigate the relationship between DWI's parameters and CLD-related features (particularly regarding fibrosis assessment).
Flexible ultrasound transducers (FUTs), capable of conforming to irregular surfaces, have become a research hotspot in the field of medical imaging. With these transducers, high-quality ultrasound images can be obtained only if strict design criteria are fulfilled. Moreover, the relative positions of array elements must be determined, which are important for ultrasound beamforming and image reconstruction.
View Article and Find Full Text PDFPhotoacoustic/ultrasound endoscopic imaging is regarded as an effective method to achieve accurate detection of intestinal disease by offering both the functional and structural information, simultaneously. Compared to the conventional endoscopy with single transducer and laser spot for signal detection and optical excitation, photoacoustic/ultrasound endoscopic probe using circular array transducer and ring-shaped laser beam avoids the instability brought by the mechanical scanning point-to-point, offering the dual-modality imaging with high accuracy and efficiency. Meanwhile, considering the complex morphological environments of intestinal tracts in clinics, developing the probe having sufficient wide imaging distance range is especially important.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2022
Atherosclerotic cardiovascular disease is a major cause of human disability and mortality. Our previous study demonstrated the safety and efficacy of sonodynamic therapy (SDT) on atherosclerotic plaques. However, traditional single-element therapeutic transducer has single acoustic field, and positioning therapeutic and imaging transducers in the same position is difficult during ultrasound imaging-guided SDT.
View Article and Find Full Text PDFObjective: The morphological and hemodynamic characterization of the microvascular network around the gastrointestinal (GI) tract can be of significant clinical value for the early diagnosis and treatment of GI tract cancer. Ultrasound localization microscopy (ULM) imaging has been demonstrated to be capable of resolving the microvascular network. However, the endoscopic application of ULM imaging techniques is still unknown.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2022
High-frequency convex array transducer, featuring both high spatial resolution and wide field of view, has been successfully developed for ophthalmic imaging. To further expand its application range to small animals' imaging, this work develops a high-frequency microconvex array transducer possessing smaller aperture size and wider scanning angle. This transducer featured 128 array elements arranged in a curvilinear 2-2 piezoelectric composite configuration, yielding a maximum view angle of 97.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
July 2022
Flexible manipulation techniques for living cells and organisms are extremely useful tools for fundamental biomedical and life science research. Acoustic tweezers, which permit non-contact, label-free manipulation, are particularly suited to micromanipulation tasks as they provide a large acoustic radiation force and can be applied in various media. Here, we describe the design and fabrication of a 3 MHz, 64-element (8 × 8), 2D planar ultrasound array that realizes the multidimensional translation, rotation, orientation, and levitation of living cells and organisms.
View Article and Find Full Text PDFResearch (Wash D C)
January 2021
Acoustic tweezers have great application prospects because they allow noncontact and noninvasive manipulation of microparticles in a wide range of media. However, the nontransparency and heterogeneity of media in practical applications complicate particle trapping and manipulation. In this study, we designed a 1.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
October 2021
Objective: Traditional endoscopic ultrasonography (EUS), which uses one-dimensional (1-D) curvilinear or radial/circular transducers, cannot achieve dynamic elevational focusing, and the slice thickness is not sufficient. The purpose of this study was to design and fabricate a 1.5-dimensional (1.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2021
Autophagy, or cellular self-digestion, is an essential process for eliminating abnormal protein in mammalian cells. Accumulating evidence indicates that increased neuronal autophagy has a protective effect on neurodegenerative disorders. It has been reported that low-intensity pulsed ultrasound (LIPUS) can noninvasively modulate neural activity in the brain.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2020
Endoscopic ultrasound (EUS), an interventional imaging technology, utilizes a circular array to delineate the cross-sectional morphology of internal organs through the gastrointestinal (GI) track. However, the performance of conventional EUS transducers has scope for improvement because of the ordinary piezoelectric parameters of Pb(Zr, Ti) [Formula: see text] (PZT) bulk ceramic as well as its inferior mechanical flexibility which can cause material cracks during the circular shaping process. To achieve both prominent imaging capabilities and high device reliability, a 128-element 6.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2021
Brain ultrasound has attracted great attention recently due to its noninvasive treatment function for brain diseases. However, ultrasound is still difficult to pass through an intact skull. Phase correction is recognized as an effective method for skull compensation.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
February 2020
Ultrasonic neuromodulation on large animals, like non-human primates, requires the array transducer to have a good steering ability to arbitrarily stimulate various brain locations. Moreover, due to the different sizes of the animal heads, the array is preferred to be conveniently adjustable to different aperture sizes. To meet these requirements, a scalable 2D plane array, which can consist of up to tens of 256-element square modules, has been designed and fabricated in this study.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
May 2019
Plasticity of synaptic structure and function play an essential role in neuronal development, cognitive functions, and degenerative diseases. Recently, low-intensity pulsed ultrasound (LIPUS) stimulation has been reported as a promising technology for neuromodulation. However, the effect of LIPUS stimulation on the structural and functional synaptic plasticity in rat hippocampus has not yet been addressed.
View Article and Find Full Text PDFAs one of the main atmospheric pollutants over surface layer,researches on the increasing surface ozone concentration and its impact on main crops have become the focus of every government and the public.In this paper,based on the observations in Nanjing using the main local cultivars in China's major winter wheat producing areas,it was expected to obtain the data including ozone concentration,meteorological data and stomatal conductance by continuous observation.Stomatal conductance model was used and parameterized,combined with flux model,we analyzed the characteristics of stomatal flux in winter wheat under ozone pollution.
View Article and Find Full Text PDFPhysiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites.
View Article and Find Full Text PDFOxidative stress due to the imbalance of reactive oxygen species (ROS) and the resulting reversible cysteine oxidation (CysOX) are involved in the early proatherogenic aspect of atherosclerosis. Given that the corresponding redox signaling pathways are still unclear, a modified biotin switch assay was developed to quantify the reversible CysOX in an atherosclerosis model established by using a monocytic cell line treated with platelet releasate. The accumulation of ROS was observed in the model system and validated in human primary monocytes.
View Article and Find Full Text PDFHere we reported an interesting phenomenon that the field-induced assemblies of magnetic nanoparticles can promote the differentiation of primary mouse bone marrow cells into osteoblasts. The reason was thought to lie in the remnant magnetic interaction inside the assemblies which resulted from the magnetic field-directed assembly. Influence of the assemblies on the cells was realized by means of interface effect rather than the internalization effect.
View Article and Find Full Text PDFProtein-based hydrogels usually do not exhibit high stretchability or toughness, significantly limiting the scope of their potential biomedical applications. Here we report the engineering of a chemically cross-linked, highly elastic and tough protein hydrogel using a mechanically extremely labile, de novo-designed protein that assumes the classical ferredoxin-like fold structure. Due to the low mechanical stability of the ferredoxin-like fold structure, swelling of hydrogels causes a significant fraction of the folded domains to unfold.
View Article and Find Full Text PDF