Publications by authors named "Jiqiang Yao"

Background: While the prognostic role of tertiary lymphoid structures (TLS) has been well studied in solid cancers, the prevalence and impact of immature precursor lymphoid structures known as lymphoid aggregates (LA) remain unresolved in relation to the disease process. In this study, we examined characteristics and the prognostic utility of LA and TLS status in histological samples from patients with melanoma.

Methods: We assessed The Cancer Genomic Atlas-skin cutaneous melanoma digital slides and melanoma specimens from the University of Pittsburgh for the presence of LA and TLS using H&E staining, multiplex immunofluorescence (mIF) and transcriptomic analyses.

View Article and Find Full Text PDF

Osteoclasts are over-activated as we age, which results in bone loss. Src deficiency in mice leads to severe osteopetrosis due to a functional defect in osteoclasts, indicating that Src function is essential in osteoclasts. G-protein-coupled receptors (GPCRs) are the targets for ∼35% of approved drugs but it is still unclear how GPCRs regulate Src kinase activity.

View Article and Find Full Text PDF

Successful treatment with tacrolimus to prevent graft versus host disease (GVHD) and minimize tacrolimus-related toxicities among allogeneic hematopoietic cell transplantation (alloHCT) recipients is contingent upon quickly achieving and maintaining concentrations within a narrow therapeutic range. The primary objective was to investigate associations between or genotype and the proportion of patients that attained an initial tacrolimus goal concentration following initiation of intravenous (iv.) and conversion to oral administration.

View Article and Find Full Text PDF

Cutaneous T cell lymphoma (CTCL), a non-Hodgkin lymphoma, is thought to arise from mature tissue-resident memory T cells. The most common subtypes include Mycosis Fungoides and Sezary Syndrome. The role of skin microbiota remains unclear in the symptom manifestation of MF.

View Article and Find Full Text PDF

Adoptive cell therapy using tumor-infiltrating lymphocytes (TILs) has shown activity in melanoma, but has not been previously evaluated in metastatic non-small cell lung cancer. We conducted a single-arm open-label phase 1 trial ( NCT03215810 ) of TILs administered with nivolumab in 20 patients with advanced non-small cell lung cancer following initial progression on nivolumab monotherapy. The primary end point was safety and secondary end points included objective response rate, duration of response and T cell persistence.

View Article and Find Full Text PDF

Purpose: Adenosine deaminase (ADA) deficiency causes severe combined immunodeficiency (SCID) through an accumulation of toxic metabolites within lymphocytes. Recently, ADA deficiency has been successfully treated using lentiviral-transduced autologous CD34+ cells carrying the ADA gene. T and B cell function appears to be fully restored, but in many patients' B cell numbers remain low, and assessments of the immunoglobulin heavy (IgHV) repertoire following gene therapy are lacking.

View Article and Find Full Text PDF

Alterations in genes encoding for proteins that control fucosylation are known to play causative roles in several developmental disorders, such as Dowling-Degos disease 2 and congenital disorder of glycosylation type IIc (CDGIIc). Recent studies have provided evidence that changes in fucosylation can contribute to the development and progression of several different types of cancers. It is therefore important to gain a detailed understanding of how fucosylation is altered in disease states so that interventions may be developed for therapeutic purposes.

View Article and Find Full Text PDF

Importance: Acral skin may develop nevi, but their mutational status and association with acral melanoma is unclear.

Objective: To perform targeted next-generation sequencing on a cohort of acral nevi to determine their mutational spectrum.

Design, Setting, And Participants: Acral nevi specimens (n = 50) that had been obtained for diagnostic purposes were identified from the pathology archives of a tertiary care academic cancer center and a university dermatology clinic.

View Article and Find Full Text PDF

Purpose: Approximately 20% of patients with -mutant myelodysplastic syndromes (MDS) achieve complete remission (CR) with hypomethylating agents. Eprenetapopt (APR-246) is a novel, first-in-class, small molecule that restores wild-type p53 functions in -mutant cells.

Methods: This was a phase Ib/II study to determine the safety, recommended phase II dose, and efficacy of eprenetapopt administered in combination with azacitidine in patients with -mutant MDS or acute myeloid leukemia (AML) with 20%-30% marrow blasts (ClinicalTrials.

View Article and Find Full Text PDF

Background: Cancer progression is governed by evolutionary dynamics in both the tumour population and its host. Since cancers die with the host, each new population of cancer cells must reinvent strategies to overcome the host's heritable defences. In contrast, host species evolve defence strategies over generations if tumour development limits procreation.

View Article and Find Full Text PDF

Dysregulated metabolism is a key driver of maladaptive tumor-reactive T lymphocytes within the tumor microenvironment. Actionable targets that rescue the effector activity of antitumor T cells remain elusive. Here, we report that the Sirtuin-2 (Sirt2) NAD-dependent deacetylase inhibits T cell metabolism and impairs T cell effector functions.

View Article and Find Full Text PDF

HOXB13, a homeodomain transcription factor, is linked to recurrence following radical prostatectomy. While HOXB13 regulates Androgen Receptor (AR) functions in a context dependent manner, its critical effectors in prostate cancer (PC) metastasis remain largely unknown. To identify HOXB13 transcriptional targets in metastatic PCs, we performed integrative bioinformatics analysis of differentially expressed genes (DEGs) in the proximity of the human prostate tumor-specific AR binding sites.

View Article and Find Full Text PDF

Resistance to androgen receptor (AR) antagonists is a significant problem in the treatment of castration-resistant prostate cancers (CRPC). Identification of the mechanisms by which CRPCs evade androgen deprivation therapies (ADT) is critical to develop novel therapeutics. We uncovered that CRPCs rely on BRD4-HOXB13 epigenetic reprogramming for androgen-independent cell proliferation.

View Article and Find Full Text PDF

Multi-targeted tyrosine kinase inhibitors (TKIs) have broad efficacy and similar FDA-approved indications, suggesting shared molecular drug targets across cancer types. Irrespective of tumor type, 20-30% of patients treated with multi-targeted TKIs demonstrate intrinsic resistance, with progressive disease as a best response. We conducted a retrospective cohort study to identify tumor (somatic) point mutations, insertion/deletions, and copy number alterations (CNA) associated with intrinsic resistance to multi-targeted TKIs.

View Article and Find Full Text PDF

Huanglongbing (HLB) in citrus infected by Liberibacter asiaticus (Las) has caused tremendous losses to the citrus industry. No resistant genotypes have been identified in citrus species or close relatives. Among citrus varieties, rough lemon () has been considered tolerant due to its ability to produce a healthy flush of new growth after infection.

View Article and Find Full Text PDF

Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation.

View Article and Find Full Text PDF

Background: Pathogen infection triggers a large-scale transcriptional reprogramming in plants, and the speed of this reprogramming affects the outcome of the infection. Our understanding of this process has significantly benefited from mutants that display either delayed or accelerated defense gene induction. In our previous work we demonstrated that the Arabidopsis Elongator complex subunit 2 (AtELP2) plays an important role in both basal immunity and effector-triggered immunity (ETI), and more recently showed that AtELP2 is involved in dynamic changes in histone acetylation and DNA methylation at several defense genes.

View Article and Find Full Text PDF

The Arabidopsis thaliana Elongator complex subunit2 (ELP2) genetically interacts with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), a key transcription coactivator of plant immunity, and regulates the induction kinetics of defense genes. However, the mechanistic relationship between ELP2 and NPR1 and how ELP2 regulates the kinetics of defense gene induction are unclear. Here, we demonstrate that ELP2 is an epigenetic regulator required for pathogen-induced rapid transcriptome reprogramming.

View Article and Find Full Text PDF

The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required.

View Article and Find Full Text PDF
Article Synopsis
  • Bovine embryos can handle heat better as they develop, and by Day 5 after insemination, heat doesn’t hurt their growth much.
  • Scientists studied how 173 genes changed in response to heat shock, finding that some genes turned on (94) and others turned off (79) when heated.
  • Overall, the heat shock showed that the embryos are mostly resistant to heat effects, with only a few specific genes being affected.
View Article and Find Full Text PDF

Background: The first distinct differentiation event in mammals occurs at the blastocyst stage when totipotent blastomeres differentiate into either pluripotent inner cell mass (ICM) or multipotent trophectoderm (TE). Here we determined, for the first time, global gene expression patterns in the ICM and TE isolated from bovine blastocysts. The ICM and TE were isolated from blastocysts harvested at day 8 after insemination by magnetic activated cell sorting, and cDNA sequenced using the SOLiD 4.

View Article and Find Full Text PDF

Background: Molecular breeding of pepper (Capsicum spp.) can be accelerated by developing DNA markers associated with transcriptomes in breeding germplasm. Before the advent of next generation sequencing (NGS) technologies, the majority of sequencing data were generated by the Sanger sequencing method.

View Article and Find Full Text PDF

Next Generation sequencing (NGS) applied to human papilloma viruses (HPV) can provide sensitive methods to investigate the molecular epidemiology of multiple type HPV infection. Currently a genotyping system with a comprehensive collection of updated HPV reference sequences and a capacity to handle NGS data sets is lacking. HPV-QUEST was developed as an automated and rapid HPV genotyping system.

View Article and Find Full Text PDF

Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples.

View Article and Find Full Text PDF