Dipole magnet vacuum chambers are among the most critical and costly components of rapid-cycling accelerator facilities. Alternative approaches to traditional ceramic chambers have been explored for the implementation of fast-ramping dipole-magnet vacuum chambers, including thin-wall metallic beam pipe chambers strengthened with transverse ribs and ceramic rings inside thin-walled chambers. Here, we report a novel 3D-printed titanium alloy cage inside the thin-wall vacuum chamber, which is designed for high-intensity heavy ion accelerator facility (HIAF) to reduce manufacturing difficulty and cost, shorten the production cycle, and improve the quality.
View Article and Find Full Text PDF