Publications by authors named "Jinzuo Ye"

Objectives: Current surgical procedures lack high-sensitivity intraoperative imaging guidance, leading to undetected micro tumours. In vivo near-infrared (NIR) fluorescence imaging provides a powerful tool for identifying small nodules. The aim of this study was to examine our experience of using 2 different NIR devices in pulmonary resection surgery.

View Article and Find Full Text PDF

In minimally invasive surgery, the white-light thoracoscope as a standard imaging tool is facing challenges of the low contrast between important anatomical or pathological regions and surrounding tissues. Recently, the near-infrared (NIR) fluorescence imaging shows superior advantages over the conventional white-light observation, which inspires researchers to develop imaging systems to improve overall outcomes of endoscopic imaging. We developed an NIR and white-light dual-channel thoracoscope system, which achieved high-fluorescent signal acquisition efficiency and the simultaneously optimal visualization of the NIR and color dual-channel signals.

View Article and Find Full Text PDF

Purpose: Fluorescence molecular tomography (FMT) is a novel imaging modality for three-dimensional preclinical research and has many potential applications for drug therapy evaluation and tumor diagnosis. However, FMT presents an ill-conditioned and ill-posed inverse problem, which is a challenge for its tomography reconstruction. Due to the importance of FMT reconstruction, it is valuable and necessary to develop further practical reconstruction methods for FMT.

View Article and Find Full Text PDF

Segmentectomy using indocyanine green (ICG) has become a primary treatment option to achieve a complete resection and preserve lung function in early-stage lung cancer. However, owing to a lack of appropriate intraoperative imaging systems, it is a huge challenge for surgeons to identify the intersegmental plane during the operation, leading to poor prognosis. Thus, we developed a novel wireless wearable fluorescence image-guided surgery system (LIGHTEN) for fast and accurate identification of intersegmental planes in human patients.

View Article and Find Full Text PDF

Fluorescent molecular imaging technique has been actively explored for optical image-guided cancer surgery in pre-clinical and clinical research and has attracted many attentions. However, the efficacy of the fluorescent image-guided cancer surgery can be compromised by the low signal-to-noise ratio caused by the external light excitation. This study presents a novel nanoparticle-mediated radiopharmaceutical-excited fluorescent (REF) image-guided cancer surgery strategy, which employs the internal dual-excitation of europium oxide nanoparticles through both gamma rays and Cerenkov luminescence emitted from radiopharmaceuticals.

View Article and Find Full Text PDF

Peritoneal carcinomatosis from gastric cancer represents a common recurrent gastric cancer that seriously affects the survival, prognosis, and quality of life of patients at its advanced stage. In recent years, complete cytoreduction surgery in combination with hyperthermic intraperitoneal chemotherapy has been demonstrated to improve the survival and prognosis of patients with malignant tumors including peritoneal carcinomatosis from gastric cancer. Establishing viable methods of accurately assessing the tumor burden in patients with peritoneal carcinoma and correctly selecting suitable patients in order to improve cytoreduction surgical outcomes and reduce the risk of postoperative complications has become a challenge in the field of peritoneal carcinoma research.

View Article and Find Full Text PDF

Fluorescence Molecular Tomography (FMT) is a powerful imaging modality for the research of cancer diagnosis, disease treatment and drug discovery. Via three-dimensional (3-D) imaging reconstruction, it can quantitatively and noninvasively obtain the distribution of fluorescent probes in biological tissues. Currently, photon propagation of FMT is conventionally described by the Finite Element Method (FEM), and it can obtain acceptable image quality.

View Article and Find Full Text PDF

Sentinel lymph node biopsy (SLNB) has become a standard of care to detect axillary lymph metastasis in early-stage breast cancer patients with clinically negative axillary lymph nodes. Current SLNB detection modalities comprising a blue dye, a radioactive tracer, or a combination of both have advantages as well as disadvantages. Thus, near-infrared fluorescence imaging using indocyanine green (ICG) has recently been regarded as a novel method that has generated interest for SLNB around the world.

View Article and Find Full Text PDF

Fluorescence molecular tomography (FMT) is a promising tomographic method in preclinical research, which enables noninvasive real-time three-dimensional (3-D) visualization for in vivo studies. The ill-posedness of the FMT reconstruction problem is one of the many challenges in the studies of FMT. In this paper, we propose a l 2,1-norm optimization method using a priori information, mainly the structured sparsity of the fluorescent regions for FMT reconstruction.

View Article and Find Full Text PDF

Difficulties in the highly sensitive detection of tumour microfoci represent a critical obstacle toward improved surgical intervention in liver cancer. Conventional preoperative imaging methods and surgeons' subjective experience are limited by their inability to effectively detect tumour lesions measuring less than 2 mm; however, intraoperative fluorescence molecular imaging may overcome this limitation. Here, we synthesised an arginine-glycine-aspartic acid (RGD)-conjugated mesoporous silica nanoparticle (MSN) highly loaded with indocyanine green (ICG) dye that could accurately delineate liver cancer margins and provide excellent tumour-to-normal tissue contrast intraoperatively.

View Article and Find Full Text PDF

Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications.

View Article and Find Full Text PDF

Fluorescence molecular tomography (FMT) is a promising tool in the study of cancer, drug discovery, and disease diagnosis, enabling noninvasive and quantitative imaging of the biodistribution of fluorophores in deep tissues via image reconstruction techniques. Conventional reconstruction methods based on the finite-element method (FEM) have achieved acceptable stability and efficiency. However, some inherent shortcomings in FEM meshes, such as time consumption in mesh generation and a large discretization error, limit further biomedical application.

View Article and Find Full Text PDF

Advanced medical imaging technology has allowed the use of fluorescence molecular imaging-guided breast cancer surgery (FMI-guided BCS) to specifically label tumour cells and to precisely distinguish tumour margins from normal tissues intra-operatively, a major challenge in the medical field. Here, we developed a surgical navigation system for real-time FMI-guided BCS. Tumours derived from highly metastatic 4T1-luc breast cancer cells, which exhibit high expression of matrix metalloproteinase (MMP) and human epidermal growth factor receptor 2 (HER2), were established in nude mice; these mice were injected with smart MMP-targeting and "always-on" HER2-targeting near-infrared (NIR) fluorescent probes.

View Article and Find Full Text PDF

Fluorescence molecular tomography (FMT) could exploit the distribution of fluorescent biomarkers that target tumors accurately and effectively, which enables noninvasive real-time 3-D visualization as well as quantitative analysis of small tumors in small animal studies in vivo. Due to the difficulties of reconstruction, continuous efforts are being made to find more practical and efficient approaches to accurately obtain the characteristics of fluorescent regions inside biological tissues. In this paper, we propose a region reconstruction method for FMT, which is defined as an L1-norm regularization piecewise constant level set approach.

View Article and Find Full Text PDF

Fluorescence molecular tomography (FMT) is a promising imaging technique in preclinical research, enabling three-dimensional location of the specific tumor position for small animal imaging. However, FMT presents a challenging inverse problem that is quite ill-posed and ill-conditioned. Thus, the reconstruction of FMT faces various challenges in its robustness and efficiency.

View Article and Find Full Text PDF

Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively.

View Article and Find Full Text PDF

Fluorescence molecular tomography (FMT), as a promising imaging modality, can three-dimensionally locate the specific tumor position in small animals. However, it remains challenging for effective and robust reconstruction of fluorescent probe distribution in animals. In this paper, we present a novel method based on sparsity adaptive subspace pursuit (SASP) for FMT reconstruction.

View Article and Find Full Text PDF

Assessment of the sentinel lymph node (SLN) in patients with early stage breast cancer is vital in selecting the appropriate surgical approach. However, the existing methods, including methylene blue and nuclides, possess low efficiency and effectiveness in mapping SLNs, and to a certain extent exert side effects during application. Indocyanine green (ICG), as a fluorescent dye, has been proved reliable usage in SLN detection by several other groups.

View Article and Find Full Text PDF