Multi-task learning (MTL) methods are widely applied in breast imaging for lesion area perception and classification to assist in breast cancer diagnosis and personalized treatment. A typical paradigm of MTL is the shared-backbone network architecture, which can lead to information sharing conflicts and result in the decline or even failure of the main task's performance. Therefore, extracting richer lesion features and alleviating information-sharing conflicts has become a significant challenge for breast cancer classification.
View Article and Find Full Text PDFBackground And Purpose: The presence of microvascular invasion (MVI) is a crucial indicator of postoperative recurrence in patients with hepatocellular carcinoma (HCC). Detecting MVI before surgery can improve personalized surgical planning and enhance patient survival. However, existing automatic diagnosis methods for MVI have certain limitations.
View Article and Find Full Text PDFComput Med Imaging Graph
March 2023
The risk assessment of carotid plaque is strongly related to the plaque echo status in ultrasound. However, the echo classification of carotid plaques based on ultrasound remains challenging due to the changes in plaque shape and semantics, along with the complex vascular environment. This study proposed a framework for Classification of Plaque by Tracking Videos (CPTV).
View Article and Find Full Text PDFThe early prediction of a patient's response to neoadjuvant chemotherapy (NAC) in breast cancer treatment is crucial for guiding therapy decisions. We aimed to develop a novel approach, named the dual-branch convolutional neural network (DBNN), based on deep learning that uses ultrasound (US) images for the early prediction of NAC response in patients with locally advanced breast cancer (LABC). This retrospective study included 114 women who were monitored with US during pretreatment (NAC ) and after one cycle of NAC (NAC).
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
September 2021