Deep convolutional neural networks approaches often assume that the feature response has a Gaussian distribution with target-centered peak response, which can be used to guide the target location and classification. Nevertheless, such an assumption is implausible when there is progressive interference from other targets and/or background noise, which produces sub-peaks on the tracking response map and causes model drift. In this paper, we propose a feature response regularization approach for sub-peak response suppression and peak response enforcement and aim to handle progressive interference systematically.
View Article and Find Full Text PDFNeural network pruning, an important method to reduce the computational complexity of deep models, can be well applied to devices with limited resources. However, most current methods focus on some kind of information about the filter itself to prune the network, rarely exploring the relationship between the feature maps and the filters. In this paper, two novel pruning methods are proposed.
View Article and Find Full Text PDF