Monitoring the current operation status of the power system plays an essential role in the enhancement of the power grid for future requirements. Therefore, the real-time state estimation (SE) of the power system has been of widely-held concern. The Kalman filter is an outstanding method for the SE, and the noise in the system is generally assumed to be Gaussian noise.
View Article and Find Full Text PDFTo address the sparse system identification problem under noisy input and non-Gaussian output measurement noise, two novel types of sparse bias-compensated normalized maximum correntropy criterion algorithms are developed, which are capable of eliminating the impact of non-Gaussian measurement noise and noisy input. The first is developed by using the correntropy-induced metric as the sparsity penalty constraint, which is a smoothed approximation of the ℓ 0 norm. The second is designed using the proportionate update scheme, which facilitates the close tracking of system parameter change.
View Article and Find Full Text PDF