The vibration pretreatment-microwave curing process can achieve high-quality molding under low-pressure conditions and is widely used in the curing of resin-based composites. This study investigated the effects of the vibration pretreatment process parameters on the void content and the fiber weight fraction of T700/TRE231; specifically, their influence on the interlaminar shear strength and impact strength of the composite. Initially, an orthogonal experimental design was employed with interlaminar shear strength as the optimization target, where vibration acceleration was determined as the primary factor and dwell time as the secondary factor.
View Article and Find Full Text PDFThe primary challenge during the secondary bonding process of full-height honeycomb sandwich structures is the aramid honeycomb core's height shrinkage. This paper systematically investigated the height evolution behavior of the honeycomb core by using a creep testing machine. The results showed that the out-of-plane compression deformation curve of aramid honeycomb cores is mainly divided into three stages: the dehumidification stage, the pressurization stage and the creep stage.
View Article and Find Full Text PDFConventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused on improving metal-metal bonding performance by applying SLJ experiments, finite element models (FEMs), and the Xgboost machine learning (ML) algorithm. The importance ranking of process parameters on tensile-shear strength (TSS) was evaluated with the interpretation toolkit SHAP (Shapley additive explanations) and it optimized reasonable bonding process parameters.
View Article and Find Full Text PDFVibration pretreatment microwave curing is a high-quality and efficient composite out-of-autoclave molding process. Focusing on interlaminar shear strength, the effects of pretreatment temperature, pretreatment time and vibration acceleration on the molding performance of composite components were analyzed sequentially using the orthogonal test design method; a scanning electron microscope (SEM) and optical digital microscope (ODM) were used to analyze the void content and fiber-resin bonding state of the specimens under different curing and molding processes. The results show that the influence order of the different vibration process parameters on the molding quality of the components was: vibration acceleration > pretreatment temperature > pretreatment time.
View Article and Find Full Text PDFFiber-reinforced polymer (FRP) materials are increasingly used in automotive industrial fields to achieve lightweight. In order to study the influence of high temperature and high humidity on the bonding structure between different materials, this paper selects basalt fiber-reinforced resin composite materials (BFRP) and aluminum alloy (Al), and uses Araldite® 2012 and Araldite® 2014, two adhesives, to make single lap joints (SLJs). The aging test was carried out for 0 (unaged), 10, 20, and 30 days under the environment of 80 °C/95% relative humidity (RH) and 80 °C/pure water.
View Article and Find Full Text PDF