Publications by authors named "Jinyou Lin"

Air pollution such as particulate matter is always a serious threat to public health, thus many disposable and degradable air filters were designed to deal with this severe challenge avoiding the secondary pollution after discarding. Herein, inspired by the natural spider web structure, a hierarchical porous composite fibrous membrane containing web-like cellulose nanofibrils (CNF) was developed. The implanted porous CNF membranes with web-like among the inter-fiber voids of electrospun poly(ethylene-co-viny alcohol) fibrous membrane were realized via a layer-by-layer (LBL) method followed by an elevated-temperature drying, which exhibit a smaller diameter with one or two orders of magnitude reduction comparing with the substrate fibers.

View Article and Find Full Text PDF

Flexible triboelectric nanogenerators (TENGs) are highly advantageous for human-centered monitoring due to their self-sustaining energy and high output performance. However, temperature fluctuations that limit thermal comfort have hindered their practical advancement. In this study, flexible titanium dioxide-silk fibroin@phase change microcapsule nanofiber films (TiO-SF@PCM NFs) were successfully developed using an efficient electro-blown spinning (EBS) technique, with exceptional triboelectric output and superior temperature regulation capabilities.

View Article and Find Full Text PDF
Article Synopsis
  • Corneal alkali burns are a major cause of vision impairment, and effective treatments are still difficult to find.
  • A new thermo-sensitive hydrogel incorporating the protein progranulin (PGRN) has been developed, which changes into a gel-like state upon contact with the cornea for targeted treatment.
  • This hydrogel not only provides excellent transparency and biocompatibility but also helps in reducing inflammation, speeding up healing, and promoting nerve regeneration, making it a promising therapy for serious corneal injuries.
View Article and Find Full Text PDF

Advanced elastomers are increasingly used in emerging areas, for example, flexible electronics and devices, and these real-world applications often require elastomers to be stretchable, tough and fire safe. However, to date there are few successes in achieving such a performance portfolio due to their different governing mechanisms. Herein, a stretchable, supertough, and self-extinguishing polyurethane elastomers by introducing dynamic π-π stacking motifs and phosphorus-containing moieties are reported.

View Article and Find Full Text PDF

Particulate matter (PM) pollution poses a serious threat to public health, disposable and degradable filter materials are expected to handle the problem in the future. Here, polyvinyl alcohol (PVA)/borax/cellulose nanofibrils (CNF) aerogels were implanted on a biodegradable corrugated paper to form composite air filters for the first time via freeze-drying the coated composite hydrogels. The low content of CNF and PVA could be cross-linked by borax to form hydrogels, which enhanced its maneuverability for surface implanting on the substrate.

View Article and Find Full Text PDF

Conventional petroleum-based synthetic polymeric fiber filter materials for separation may cause secondary pollution to the environment due to their non-degradable properties. Herein, we report a facile method of preparation of a biodegradable composite filter that can achieve filtration for air by underlaying the commercialized cellulose paper towel under electrospun zein fibers. The morphology of zein fibers was successfully steered via varying the weight ratios of ethanol/deionized water mixture solvent, as a result, the round or flat ribbon fibers were obtained.

View Article and Find Full Text PDF

The rehabilitation of visual acuity with severe conjunctival fibrosis depends on ocular reconstruction with suitable conjunctival substitutes. In this study, we have developed poly(lactic acid) (PLA) electrospun nanofibrous membranes (EFMs) surface coated by cellulose nanofibrils (CNF) and/or silk peptide (SP). The CNF coating improved the hydrophilicity and the SP coating proliferated conjunctival epithelial cells (CjECs).

View Article and Find Full Text PDF

The three-dimensional (3D) dual-energy focal stacks (FS) imaging method has been developed to quickly obtain the spatial distribution of an element of interest in a sample; it is a combination of the 3D FS imaging method and two-dimensional (2D) dual-energy contrast imaging based on scanning transmission soft X-ray microscopy (STXM). A simulation was firstly performed to verify the feasibility of the 3D elemental reconstruction method. Then, a sample of composite nanofibers, polystyrene doped with ferric acetylacetonate [Fe(acac)3], was further investigated to quickly reveal the spatial distribution of Fe(acac)3 in the sample.

View Article and Find Full Text PDF

Fine particulate matter (PM) air pollution has increasingly become a global problem; thus, high-performance air filtration materials are in great demand. Herein, we first prepared a biodegradable hierarchically structured nanocellulose-implanted air filter with a high filtration capacity using a freeze-drying technique. In this hierarchically structured air filter, porous structures of corrugated paper and cellulose nanofibrils (CNFs) were used as a frame and functional fillers, respectively.

View Article and Find Full Text PDF

This study describes a two-step alkali/oxidation process to efficiently convert waste sugarcane bagasse (SCB) into cellulose nanofibrils (CNF) whose structures have been characterized using a range of analytical techniques (SR-WAXS, IR, TEM and DLS). Increasing the concentration of the NaOH solution from 10 to 16 wt% in the first step results in a gradual increase in cellulose II content from 0 to >99 %, which also produces a corresponding increase in fiber crystallinity index from 32 to 61 %. Varying the concentration of NaClO used in the second oxidative step enables the morphologies of the CNF to be reliably controlled, with fiber lengths decreasing from micrometer to nanometer levels as the amount of NaClO oxidant used is increased.

View Article and Find Full Text PDF

Corneal and conjunctival infections are common ocular diseases, sometimes, causing severe and refractory drug-resistant bacteria infections. Fungal keratitis is a leading cause for blindness and traditional medical treatment is unsatisfactory. Thus, there is an urge to develop a new therapy to deal with these cases.

View Article and Find Full Text PDF

Cellulose nanofibrils (CNF) is a natural nanomaterial composed of biomacromolecules that can be extracted from plants and has great potential applications in many fields due to its excellent regenerative, sustainable, and biodegradable properties. In this work, the flax CNF with hierarchical scales was obtained by using the flax fibers (FF) treated with different concentrations of alkaline solution, followed by the TEMPO-mediated ternary oxidation and mechanical treatment. Subsequently, the resultant CNF was implanted on the commercial filter paper as a surface barrier for oil/water preparation.

View Article and Find Full Text PDF

Cellulose nanofibrils (CNF) is a suitable functional material as its lightweight, huge availability and biodegradable advantages. A direct-evaporation method was employed to prepare the CNF nanopapers with or without FeO and TiO nanoparticles (NPs) in the form of films, which is more facile and efficient in comparison with the methods of vacuum-filtration and cast drying. A combination of three-dimensional (3D) focal stacks and dual-energy imaging method was firstly used to characterize the CNF nanopapers embedded with FeO and TiO NPs, where the locations of the NPs can be clearly and exactly distinguished.

View Article and Find Full Text PDF

Fabrication of the helical fibers with sheath/core structure comprising 3D interconnected porous polystyrene (PS) and ductile polyvinylidene fluoride is inspired by coiled plant tendril. The key innovation point applied in this study is to produce a helical porous system based on sheath/core structure that can come into being a huge storage space in the sorption process for crude oil. More importantly, the mechanical properties confirm to have a more excellent improvement than that of the initial PS fibers, which make it become a possible candidate for the large-area sorption and reuse of crude oil from the ocean or industry.

View Article and Find Full Text PDF

Cotton stalk bark, as the byproduct of cotton plant, was usually discarded and/or combusted, leading to waste of resources and environment pollution. How to efficiently utilize this kind of cellulosic materials is of significative to energy saving and environment protection. Herein, we report on the extraction of cellulose nanofibrils (CNF) from the cotton stalk bark for the first time by a combination of TEMPO-oxidation and mechanical disintegration method.

View Article and Find Full Text PDF

Thermoresponsive photonic materials having hierarchical structures are created by combining a template of Morpho butterfly wings with poly(N-isopropylacrylamide) (PNIPAM) through a chemical bonding and polymerization route. These materials show temperature-induced color tunability. Through reacting with both NIPAM monomers and the amino groups of chitosan in wing scales, glutaraldehyde workes as a bridge by creating chemical bonding between the biotemplate and the PNIPAM.

View Article and Find Full Text PDF

Positively charged lysozyme (LZ) and negatively charged pectin, were alternately deposited on the surface of the cellulose nanofibrous mats by layer-by-layer (LBL) self-assembly technique. Scanning electron microscopy images showed that the nanofibers were orderly and compactly arrayed after LBL. Besides, as the number of LZ/pectin bilayers increased, the average diameter of nanofibers increased.

View Article and Find Full Text PDF

In this work, we report the cellulose nanofibrils extracted from the pristine jute fibers via the pretreatments followed by the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and mechanical disintegration. The effects of pretreatments by using the NaOH solution and dimethyl sulfoxide solvent on the fiber morphology and macro/micro-structures were investigated by polarizing microscope and synchrotron radiation wide/small-angle X-ray scattering (WAXS/SAXS). The cellulose nanofibrils exhibit a diameter ranging from 5 nm to 20 nm and a length of several micrometers, which have been assembled into cellulose aerogels by the lyophilization of as-prepared nanofibrils dispersions with various concentrations.

View Article and Find Full Text PDF

Novel spinning solution, prepared by dissolving hydroxyethyl cellulose (HEC) owning a low molar substitution (MS) into NaOH/urea/thiouea aqueous solution with a specific weight ratio of 8:8:6.5, was employed to fabricate a new type of regenerated fibers by wet-spun method. The structure and properties of the resultant HEC fibers were characterized by (13)C NMR, FTIR, synchrotron WAXS, SEM, and tensile tester.

View Article and Find Full Text PDF

The pollution arising from oil spills is a matter of great concern due to its damaging impacts on the ecological environment, which has created a tremendous need to find more efficient materials for oil spill cleanup. In this work, we reported a sorbent for oil soak-up from a water surface with a high sorption capacity, good selectivity, and excellent reusability based on the hydrophobic-oleophilic fibrous mats that were fabricated via co-axial electrospinning polystyrene (PS) solution as the shell solution and polyurethane (PU) solution as the core solution. The fine structures of as-prepared fibers were regulated by manipulating the spinning voltages, core solution concentrations, and solvent compositions in shell solutions, which were also characterized by field emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption method, and synchrotron radiation small-angle X-ray scattering.

View Article and Find Full Text PDF

We report a facile method to control intra-fiber porosity via varying the relative humidity and inter-fiber voids through the blending of two different polymeric fibers via multi-nozzles spinning of electrospun fibers for selective adsorption of oil from water.

View Article and Find Full Text PDF

The development of oil sorbents with high sorption capacity, low cost, scalable fabrication, and high selectivity is of great significance for water environmental protection, especially for oil spillage on seawater. In this work, we report nanoporous polystyrene (PS) fibers prepared via a one-step electrospinning process used as oil sorbents for oil spill cleanup. The oleophilic-hydrophobic PS oil sorbent with highly porous structures shows a motor oil sorption capacity of 113.

View Article and Find Full Text PDF

In this study, we conducted a subtle regulation of micro- and nanostructures of electrospun polystyrene (PS) fibers via tuning the molecular weights of the polymers with different sources, solvent compositions, and solution concentration. The surface morphology and porous structures of as-prepared PS fibers were characterized, and a full and intuitive observation of the porous structures as well as a tentative account of the formation of porous structures was presented. Additionally, the porous PS fibrous mats showed much higher oil absorption capacities than those of commercial polypropylene fibers in the form of a non-woven fabric, which displays a bight future for oil spill cleanups.

View Article and Find Full Text PDF

Electro-spinning/netting (ESN) as a cutting-edge technique evokes much interest because of its ability in the one-step preparation of versatile nano-fiber/net (NFN) membranes. Here, a controllable fabrication of polyurethane (PU) NFN membranes with attractive structures, consisting of common electrospun nanofibers and two-dimensional (2D) soap bubble-like structured nano-nets via an ESN process is reported. The unique nanoscaled NFN architecture can be finely controlled by regulating the solution properties and several ESN process parameters.

View Article and Find Full Text PDF

Inspired by the self-cleaning lotus leaf and silver ragwort leaf, here we demonstrate the fabrication of biomimetic superhydrophobic fibrous mats via electrospinning polystyrene (PS) solution in the presence of silica nanoparticles. The resultant electrospun fiber surfaces exhibited a fascinating structure with the combination of nano-protrusions and numerous grooves due to the rapid phase separation in electrospinning. The content of silica nanoparticles incorporated into the fibers proved to be the key factor affecting the fiber surface morphology and hydrophobicity.

View Article and Find Full Text PDF