Publications by authors named "Jinyong Zhuang"

Poly[(9,9-dioctylfluorenyl-2,7-diyl)-(4,4'-(-(4-butylphenyl)))] (TFB) has been widely used as a hole transport layer (HTL) material in cadmium-based quantum dot light-emitting diodes (QLEDs) because of its high hole mobility. However, as the highest occupied molecular orbital (HOMO) energy level of TFB is -5.4 eV, the hole injection from TFB to the quantum dot (QD) layer is higher than 1.

View Article and Find Full Text PDF

We report an inverted and multilayer quantum dot light emitting diode (QLED) which boosts high efficiency by tuning the energy band alignment between charge transport and light emitting layers. The electron transport layer (ETL) was ZnO nanoparticles (NPs) with an optimized doping concentration of cesium azide (CsN) to effectively reduce electron flow and balance charge injection. This is by virtue of a 0.

View Article and Find Full Text PDF

With the help of photonic sintering using intensive pulse light (IPL), copper has started to replace silver as a printable conductive material for printing electrodes in electronic circuits. However, to sinter copper ink, high energy IPL has to be used, which often causes electrode destruction, due to unreleased stress concentration and massive heat generated. In this study, a Cu/Sn hybrid ink has been developed by mixing Cu and Sn particles.

View Article and Find Full Text PDF

Film morphology has predominant influence on the performance of multilayered organic light-emitting diodes (OLEDs), whereas there is little reported literature from the angle of the molecular level to investigate the impact on film-forming ability and device performance. In this work, four isomeric cross-linkable electron-transport materials constructed with pyridine, 1,2,4-triazole, and vinylbenzyl ether groups were developed for inkjet-printed OLEDs. Their lowest unoccupied molecular orbital (∼3.

View Article and Find Full Text PDF

Metal-mesh is one of the contenders to replace indium tin oxide (ITO) as transparent conductive electrodes (TCEs) for optoelectronic applications. However, considerable surface roughness accompanying metal-mesh type of transparent electrodes has been the root cause of electrical short-circuiting for optoelectronic devices, such as organic light-emitting diode (OLED) and organic photovoltaic (OPV). In this work, a novel approach to making metal-mesh TCE has been proposed that is based on hybrid printing of silver (Ag) nanoparticle ink and electroplating of nickel (Ni).

View Article and Find Full Text PDF

High-efficiency quantum dot light-emitting diodes (QLEDs) were fabricated using inkjet printing with a novel cross-linkable hole transport material N,N'-(9,9'-spirobi[fluorene]-2,7-diylbis[4,1-phenylene])bis(N-phenyl-4'-vinyl-[1,1'-biphenyl]-4-amine) (SDTF). The cross-linked SDTF film has excellent solvent resistance, high thermal stability, and the highest occupied molecular orbital (HOMO) level of -5.54 eV.

View Article and Find Full Text PDF

A novel cross-linkable electron-transport material has been designed and synthesized for use in the fabrication of solution-processed OLEDs. The material exhibits a low LUMO level of -3.51 eV, a high electron mobility of 1.

View Article and Find Full Text PDF