Publications by authors named "Jinying Xi"

An electrochemical biofilter (EBF) was developed for enhancing the removal of volatile organic compounds (VOCs) through current. The removal efficiency (RE) of toluene exhibited a notable increase of 15% while the biomass growth rate exhibited a corresponding decline of 46% under an optimal current intensity of 50 mA. Meanwhile, the efficacy of the EBF system was markedly enhanced upon the removal of n-hexane, styrene, dichloromethane, and diisobutylene.

View Article and Find Full Text PDF

Bioaerosols control techniques, especially ultraviolet germicidal irradiation (UVGI) are gaining attention due to increasing needs for controlling of health risk caused by airborne biocontaminants. The effectiveness of a full-scale in-duct UVGI air disinfection system was investigated. One bacterium, a wild type Escherichia coli, and three fungal spores, Penicillium aragonense, Rhodotorula glutinis, and Cladosporium sp.

View Article and Find Full Text PDF
Article Synopsis
  • * Bioelectrochemical systems (BESs) use weak electrical stimulation to effectively break down these tough-to-degrade compounds in various environments like wastewater and groundwater.
  • * The review covers how BES configurations work, the mechanisms behind degradation, performance-enhancing additives, and future challenges in improving the removal of COCs.
View Article and Find Full Text PDF

The production of nitrous oxide (NO) through the biological denitrification of nitric oxide (NO) from flue gases has recently been achieved. Although the temperature of flue gas after desulphurization is usually 45-70 °C, all previous studies conducted microbial denitrification of NO under mesophilic conditions (22-35 °C). This study investigated the biological conversion of NO to NO in both mesophilic (35-45 °C) and thermophilic conditions (45-50 °C).

View Article and Find Full Text PDF

The microbial electrolysis cell coupled with the biotrickling filters (MEC-BTF) was developed for enhancing the biodegradation of gaseous m-dichlorobenzene (m-DCB) through weak electrical stimulation. The maximum removal efficiency and elimination capacity in MEC-BTF were 1.48 and 1.

View Article and Find Full Text PDF

This study presents a Computational Fluid Dynamics (CFD) based biofiltration model to investigate the airflow distribution and the impact of bed flow unevenness (BFU) on the removal of Volatile Organic Compounds (VOCs) in biofilters. The biofiltration model consists of a gas flow sub-model and a VOCs removal sub-model, which were validated by pilot-scale experiments. The model was used to examine the quantitative relationship among reactor dimensions, including the width to height ratio of the filter bed and empty bed residence time (EBRT), BFU, and performance for VOCs biofilters.

View Article and Find Full Text PDF

Biofilters usually have poor VOC removal performance at temperatures lower than 20 °C. In this study, two quorum sensing (QS) enhancement methods, which are addition of exogenous N-acyl-homoserine lactones (AHLs) and inoculation of AHL-producing bacteria, were applied in biofilters treating gaseous toluene at a low temperature of 12 °C. Their effects on biofilter performance and biofilm characteristics were investigated.

View Article and Find Full Text PDF

A biofilter treating gaseous VOCs is usually a packed bed system which will encounter bed clogging problems with increased pressure drop and uneven gas flow in the filter bed. In this study, a lab-scale fluidized bed reactor (FBR) was set up treating gaseous toluene and compared with a packed bed reactor (PBR) with the same bed height of 150 cm. During 45 days of operation, the average elimination capacity of the FBR was 242 g m∙h, similar to that in the PBR (228 g m∙h) under an inlet toluene concentration of 100-300 mg m and an empty bed residence time (EBRT) of 0.

View Article and Find Full Text PDF

In this study, effects of two quorum sensing (QS) enhancement methods on the performance and biofilm of biofilters treating chlorobenzene were investigated. Three biofilters were set up with BF1 as a control, BF2 added exogenous N-acyl-homoserine lactones (AHLs) and BF3 inoculated AHLs-producing bacterium identified as Acinetobacter. The average chlorobenzene elimination capacities were 73 and 77 g/m/h for BF2 and BF3 respectively, which were significantly higher than 50 g/m/h for BF1.

View Article and Find Full Text PDF

Modeling and prediction of HS emission from wastewater are important since gaseous HS will induce significant corrosion and odor problems. Most previous studies focused on HS emission of wastewater in pipeline systems, which may not be fit for HS emission in wastewater treatment plants (WWTPs). This study provided a two-phase mass transfer model for prediction of HS emission concentrations.

View Article and Find Full Text PDF

Background: The ozonation of biofilters is known to alleviate clogging and pressure drop issues while maintaining removal performances in biofiltration systems treating gaseous volatile organic compounds (VOCs). The effects of ozone on the biofilter microbiome in terms of biodiversity, community structure, metabolic abilities, and dominant taxa correlated with performance remain largely unknown.

Methods: This study investigated two biofilters treating high-concentration toluene operating in parallel, with one acting as control and the other exposed to low-dosage (200 mg/m) ozonation.

View Article and Find Full Text PDF

Intense human disturbance has made algal bloom a prominent environmental problem in gate-controlled urban water bodies. Urban water bodies present the characteristics of natural rivers and lakes simultaneously, whose algal blooms may manifest multi-factor interactions. Hence, effective regulation strategies require a multi-factor analysis to understand local blooming mechanisms.

View Article and Find Full Text PDF

The biogas produced in food waste anaerobic digestion (FWAD) contains HS which can lead to corrosion, bad smell and poisoning accident. To control HS pollution, the characteristics and mechanisms of HS production in FWAD should be known. In this study, a lab-scale FWAD batch test was applied for 20 days under 35 °C.

View Article and Find Full Text PDF

Fluidized bed bioreactors can overcome the limitations of packed bed bioreactors such as clogging, which has been observed in the industrial application for decades. The key to establish a gaseous fluidized bed bioreactor for treatment of volatile organic compounds is to achieve microbial growth on a light packing material. In this study, Two fungal species and two bacterial species were isolated to build a fungal fluidized-bed reactor (FFBR).

View Article and Find Full Text PDF

Polyurethane (PU) sponges are popular packing material in biofilters and their smooth and hydrophobic surface often leads to an uneven distribution and detachment of biofilms. In this work, the surface of PU sponge was modified to obtain higher roughness and positive charge. The performances of two biofilters (BF1 with pristine sponge and BF2 with modified sponge) for benzene, toluene, ethylbenzene, and xylene (BTEX) removal were investigated.

View Article and Find Full Text PDF

Eight species of mixotrophic sulfide oxidizing bacteria (SOB) were isolated from activated sludge and identified using 16S rRNA sequence analysis. The effects of organic substances, dissolved oxygen (DO) and nitrate on sulfide oxidation and bacterial growth were studied in this work. The results showed that Paracoccus sp.

View Article and Find Full Text PDF

Malodorous surface water is an important worldwide environmental concern. Current remediation methods, such as aeration or the addition of chemicals, are not eco-friendly due to their high energy consumption or secondary pollution. This study proposed a modified columnar air-cathode microbial fuel cell as a sustainable and effective remediation module to improve water quality.

View Article and Find Full Text PDF

Low-concentration ozonation was developed as a novel technique to control the excess biomass in volatile organic compound (VOC) biofilters. In order to understand the reaction mechanism between ozone and biomass, the changes in properties of ozone exposed extracellular polymeric substances (EPS) were investigated in this study. EPS was sequestered from the biofilm, obtained from a biofilter treating gaseous toluene, and then it was exposed to gaseous ozone at 272 ± 22 ppm continuously for 12 h.

View Article and Find Full Text PDF

The effects of inlet VOCs (Volatile Organic Compounds) shifts on microbial community structure in a biofiltration system were investigated. A lab-scale biofilter was set up to treat eight VOCs sequentially. Short declines in removal efficiency appeared after VOCs shifts and then later recovered.

View Article and Find Full Text PDF

Ultraviolet (UV) photodegradation is increasingly applied to control volatile organic compounds (VOCs) due to its degradation capabilities for recalcitrant compounds. However, sometimes the UV photodegradation products are also toxic and can affect human health. Here, 10 VOCs at 150~200 ppm in air were treated using a laboratory-scale UV reactor with 185/254 nm irradiation, and the biotoxicity of their off-gas was studied by investigating their off-gas absorption solutions.

View Article and Find Full Text PDF

For biofilters treating waste gases containing volatile organic compounds (VOCs), biomass accumulation is a common problem which will induce bed clogging and significant decrease in VOCs removal efficiency during long-term operation. In this study, ozone injection was developed as a biomass control strategy, and its effects on the biofilter performance and the microbial community structure were investigated in long-term operation. Two biofilters, identified as BF1 and BF2, were operated continuously for 160 days treating gaseous toluene under the same conditions, except that 200 mg/m ozone was continuously injected into BF1 during days 45-160.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are significant atmospheric pollutants that cause environmental and health risks. Waste gases polluted with multiple VOCs often need to be purified simultaneously in biofilters, which may lead to antagonistic, neutral, or synergistic effects on removal performance. Antagonism limits the application of biofilters to simultaneous treatment of multiple VOCs, while synergism has not yet been fully exploited.

View Article and Find Full Text PDF

Saponins were applied to enhance ethylbenzene removal in biotrickling filters (BTFs), and comparison experiments were carried out to evaluate the effects of saponins on ethylbenzene removal and biofilm characteristics at various saponin concentrations. Results showed that the optimum concentration of saponins was 40 mg/L and a maximum removal efficiency (RE) of ethylbenzene reached 84.3%.

View Article and Find Full Text PDF

Activated sludge recycling has been developed as a novel technique to directly prevent volatile sulfides emission from wastewater influents. In this study, mechanisms and characteristics of dissolved sulfides removal in aqueous solution by activated sludge were investigated. When DO content in water was 0.

View Article and Find Full Text PDF

Chlorine disinfection is a commonly used disinfection process in wastewater treatment, but its effects on the indigenous bacterial community in treated wastewater have not been fully elucidated. In this study, secondary effluent samples collected in four wastewater treatment plants (WWTPs) were selected for chlorine disinfection. Shifts in the bacterial community compositions in secondary effluent samples upon chlorine disinfection, both immediately and after 24 h of storage, were investigated using Illumina MiSeq sequencing combined with propidium monoazide (PMA) treatment.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1862r3m5orij0kbcpd2rvh7njui4va9g): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once