Fully π-conjugated polymers consisting of plane and rigid aromatic units present a fantastic optoelectronic property, a promising candidate for printed and flexible optoelectronic devices. However, obtaining high-performance conjugated polymers with an excellent intrinsically flexible and printable capacity is a great challenge due to their inherent coffee-ring effect and brittle properties. Here, we report an asymmetric substitution strategy to improve the printable and stretchable properties of deep-blue light-emitting conjugated polymers with a strong inter-aggregate capillary interaction for flexible printed polymer light-emitting diodes.
View Article and Find Full Text PDFPhysical blending of fully π-conjugated polymers (FπCPs) is an effective strategy to achieve intrinsically stretchable films for the fabrication of flexible optoelectronic devices, but easily causes phase separation, nonuniform morphology and uncontrollable photo-electronic processing. This may cause low efficiency, unstable and nonuniform emission, and poor color purity, which are undesirable for deep-blue flexible polymer light-emitting diodes (FPLEDs). Herein, a "Like Dissolves Like" design principle to prepare semiconductor fluid plasticizers (SFPs) is established and intrinsically stretchable FπCPs films via external plasticization for high-performance deep-blue FPLEDs are developed.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is a psychiatric condition characterized by sadness and anhedonia and is closely linked to chronic low-grade neuroinflammation, which is primarily induced by microglia. Nonetheless, the mechanisms by which microglia elicit depressive symptoms remain uncertain. This review focuses on the mechanism linking microglia and depression encompassing the breakdown of the blood-brain barrier, the hypothalamic-pituitary-adrenal axis, the gut-brain axis, the vagus and sympathetic nervous systems, and the susceptibility influenced by epigenetic modifications on microglia.
View Article and Find Full Text PDFFully π-conjugated polymers with rigid aromatic units are promising for flexible optoelectronic devices, but their inherent brittleness poses a challenge for achieving high-performance, intrinsically stretchable fully π-conjugated polymer. Here, we are establishing an external-plasticizing strategy using semiconductor fluid plasticizers (Z1 and Z2) to enhance the optoelectronic, morphological, and stretchable properties of fully π-conjugated polymer films for flexible light-emitting diodes. The synergistic effect of hierarchical structure and optoelectronic properties of Z1 in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) films enable excellent stretchable deformability (~25%) and good conductivity.
View Article and Find Full Text PDFBackground: Treatment strategy against immune-related adverse events (irAEs) induced by immune checkpoint inhibitors (ICIs) frequently requires other immunosuppressive agents. Tofacitinib is a rapidly acting JAK-STAT inhibitor with proven efficacy in multiple autoimmune diseases. We aimed to evaluate the efficacy and safety of tofacitinib in the management of irAEs in cancer patients.
View Article and Find Full Text PDFGridization is an emerging molecular integration technology that enables the creation of multifunctional organic semiconductors through precise linkages. While Friedel-Crafts gridization of fluorenols is potent, direct linkage among fluorene molecules poses a challenge. Herein, we report an achiral Pd-PPh-cataylized diastereoselective (>99:1 d.
View Article and Find Full Text PDFEmerging intrinsically flexible fully π-conjugated polymers (FπCPs) are a promising functional material for flexible optoelectronics, attributed to their potential interchain interpenetration and entanglement. However, the challenge remains in obtaining elastic-plastic FπCPs with intrinsic robust optoelectronic property and excellent long-term and cycling deformation stability simultaneously for applications in deep-blue flexible polymer light-emitting diodes (PLEDs). This study, demonstrates a series of elastic-plastic FπCPs (P1-P4) with an excellent energy dissipation capacity via side-chain internal plasticization for the ultra-deep-blue flexible PLEDs.
View Article and Find Full Text PDFVarious diseases involving the cavernous sinus can cause a condition called cavernous sinus syndrome (CSS), which is characterized by ophthalmoplegia or sensory deficits over the face resulting from the compression effect of internal structure. While tumor compression is the most reported cause of CSS, statistical data on CSS caused by infections are limited. Its risk factors, treatment methods, and clinical outcomes are not well-documented.
View Article and Find Full Text PDFMCOLN1/TRPML1 is a nonselective cationic channel specifically localized to the late endosome and lysosome. With its property of mediating the release of several divalent cations such as Ca, Zn and Fe from the lysosome to the cytosol, MCOLN1 plays a pivotal role in regulating a variety of cellular events including endocytosis, exocytosis, lysosomal biogenesis, lysosome reformation, and especially in Macroautophagy/autophagy. Autophagy is a highly conserved catabolic process that maintains cytoplasmic integrity by removing superfluous proteins and damaged organelles.
View Article and Find Full Text PDFThe cornerstones of the advancement of flexible optoelectronics are the design, preparation, and utilization of novel materials with favorable mechanical and advanced optoelectronic properties. Molecular crystalline materials have emerged as a class of underexplored yet promising materials due to the reduced grain boundaries and defects anticipated to provide enhanced photoelectric characteristics. An inherent drawback that has precluded wider implementation of molecular crystals thus far, however, has been their brittleness, which renders them incapable of ensuring mechanical compliance required for even simple elastic or plastic deformation of the device.
View Article and Find Full Text PDFEmerging printed large-area polymer light-emitting diodes (PLEDs) are essential for manufacturing flat-panel displays and solid lighting devices. However, it is challenging to obtain large-area and stable ultradeep-blue PLEDs because of the lack of light-emitting conjugated polymers (LCPs) with robust deep-blue emissions, excellent morphological stabilities, and high charging abilities. Here, a novel unsymmetrically substituted polydiarylfluorene (POPSAF) is obtained with stable narrowband emission for large-area printed displays via triphenylamine (TPA) spirofunctionalization of LCPs.
View Article and Find Full Text PDFThe development of biomolecule delivery systems is essential for the treatment of various diseases such as cancer, immunological diseases, and metabolic disorders. For the first time, we found that SARS-CoV-2-encoded nonstructural protein 2 (NSP2) can be secreted from the cells, where it is synthesized. Brefeldin A and H89, inhibitors of ER/Golgi secretion pathways, did not inhibit NSP2 secretion.
View Article and Find Full Text PDFLight-emitting molecular crystals with efficient emission behavior are crucial for fabricating low-threshold ultraviolet organic lasers. Herein, we demonstrated a rhombus microcrystal from a fluorene-based conjugated molecule (CL-1) with robust emission behavior for an ultraviolet organic laser. Due to the synergistic effect of twisted intramolecular conformation and weak π-interaction, the CL-1 single crystal showed an extremely high photoluminescence quantum yield (PLQY) of ∼82%, due to their single-molecule excitonic behavior.
View Article and Find Full Text PDFAims: To assess the different imaging characteristics between corticosteroid-sensitive (CS) and corticosteroid-refractory (CR) immune checkpoint inhibitor-associated myocarditis (ICIaM) with cardiac magnetic resonance (CMR) and the potential CMR parameters in the early detection of CR ICIaM.
Methods And Results: Thirty-five patients diagnosed with ICIaM and 30 age and gender-matched cancer patients without a history of ICI treatment were enrolled. CMR with contrast was performed within 2 days of clinical suspicion.
Solution-processable organic conjugated molecules (OCMs) consist of a series of aromatic units linked by σ-bonds, which present a relatively freedom intramolecular motion and intermolecular re-arrangement under external stimulation. The cross-linked strategy provides an effective platform to obtain OCMs network, which allows for outstanding optoelectronic, excellent physicochemical properties, and substantial improvement in device fabrication. An unsaturated double carbon-carbon bond (C = C) is universal segment to construct crosslinkable OCMs.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2023
Organic small-molecule semiconductor materials have attracted extensive attention because of their excellent properties. Due to the randomness of crystal orientation and growth location, however, the preparation of continuous and highly ordered organic small-molecule semiconductor nanocrystal arrays still face more challenges. Compared to organic macromolecules, organic small molecules exhibit better crystallinity, and therefore, they exhibit better semiconductor performance.
View Article and Find Full Text PDFIntrinsically stretchable polymeric semiconductors are essential to flexible polymer light-emitting diodes (PLEDs) owing to their excellent strain tolerance capacity under long-time deformation operation. Obtaining intrinsic stretchability, robust emission properties, and excellent charge-transport behavior simultaneously from fully π-conjugated polymers (FCPs) is difficult, particularly for applications in deep-blue PLEDs. Herein, an internal plasticization strategy is proposed to introduce a phenyl-ester plasticizer into polyfluorenes (PF-MC4, PF-MC6, and PF-MC8) for narrowband deep-blue flexible PLEDs.
View Article and Find Full Text PDFHierarchical structure of conjugated polymers is critical to dominating their optoelectronic properties and applications. Compared to nonplanar conformational segments, coplanar conformational segments of conjugated polymers (CPs) demonstrate favorable properties for applications as a semiconductor. Herein, recent developments in the coplanar conformational structure of CPs for optoelectronic devices are summarized.
View Article and Find Full Text PDFUnlabelled: Cardiomegaly is associated with poor clinical outcomes and is assessed by routine monitoring of the cardiothoracic ratio (CTR) from chest X-rays (CXRs). Judgment of the margins of the heart and lungs is subjective and may vary between different operators.
Methods: Patients aged > 19 years in our hemodialysis unit from March 2021 to October 2021 were enrolled.
In this work, selenide-doped bismuth sulfides (BiSSe) was successfully prepared through Se doping BiS Se to improve the electronic conductivity and increase the interlayer spacing. Then the anisotropic ReS nanosheet arrays were grown on the surface of BiSSe to form a hierarchical heterostructure (BiSSe@ReS). The doping and construction of heterostructure processes can greatly improve the electrochemical conductivity of electrode materials and relieve the volume expansion during the continuous charge/discharge processes.
View Article and Find Full Text PDFDoping and blending strategies are crucial means to precisely control the excited states and energy level in conjugated molecular systems. However, effective models and platforms are rarely proposed to systematically explore the effects of the formation of trapped doped centers on heterogeneous structures, energy level and ultrafast photophysical process. Herein, for deeply understanding the impact of molecular doping in film energy levels and photoexcitation dynamics, we set a supramolecular N-B coordination composed by the conjugated molecules of pyridine functionalized diarylfluorene (host material), named as ODPF-Phpy and ODPF-(Phpy), and the molecule of tris(perfluorophenyl)borane (BCF) (guest material).
View Article and Find Full Text PDFLarge-area polymer light-emitting diodes (PLEDs) manufactured by printing are required for flat-panel lighting and displays. Nevertheless, it remains challenging to fabricate large-area and stable deep-blue PLEDs with narrowband emission due to the difficulties in precisely tuning film uniformity and obtaining single-exciton emission. Herein, efficient and stable large-area deep-blue PLEDs with narrowband emission are prepared from encapsulated polydiarylfluorene.
View Article and Find Full Text PDFPurpose: Sparse researches evaluated the quantitative cardiovascular magnetic resonance (CMR) parameters for immune checkpoint inhibitors (ICI)-associated myocarditis. We aimed to apply quantitative CMR mappings and late gadolinium enhancement (LGE) extent for detecting ICI-associated myocarditis.
Method: The retrospective study included patients with ICI-associated myocarditis and CMR examination from August 2018 to August 2021 in our hospital.
Background: Identifying nonpulmonary vein triggers during atrial fibrillation (AF) ablation is of great importance. Currently, there are limited data on AF triggered by the inferior vena cava (IVC).
Objectives: This study was performed to investigate the incidence, characteristics, and implications of IVC triggers for AF.
It is challenging to construct the intrinsically stretchable active layer of rigid conjugated polymers (CPs) toward flexible deep-blue light-emitting diodes (FLEDs). Inspired by the self-toughness effect, sacrificial hydrogen bonding (H-bonding) and a cross-linked network synergistically enabled polydiarylfluorene (PFs-NH) films to present efficient deep-blue emission and excellent intrinsic stretchability. In particular, a cross-linked network structure presenting viscoelasticity behaviors, which was successfully inherited into postprocessed films with interchain interpenetration and a crystallinity domain and behaved as energy absorption and dissipation centers, was induced by the interchain H-bonding interaction in toluene (Tol) precursor solutions where the storage moduli (') gradually exceeded the loss moduli (″).
View Article and Find Full Text PDF