Publications by authors named "Jinyang Xi"

Interlayer excitons (IX), spatially separated electron-hole pair quasiparticles, can form in type-II van der Waals heterostructures (vdWH). To date, the most widely studied IX in hetero- and homobilayer transition metal dichalcogenides feature momentum-indirect and visible interlayer recombinations. However, momentum-direct IX emissions and interlayer absorptions, especially in the infrared, are crucial for excitonic devices but remain underexplored.

View Article and Find Full Text PDF
Article Synopsis
  • Band structures like band gap and dispersion are key material properties that can be influenced by temperature due to lattice expansion and atomic vibrations.
  • This study uses a new electron-phonon renormalization method to examine how temperature affects the band structures of specific thermoelectric filled skutterudites (BaCoSb, BaFeSb, and YbFeSb) from fundamental principles.
  • The results indicate that BaCoSb's band gap decreases more gradually with temperature compared to BaFeSb and YbFeSb, and that the electronic structure near the band edges remains similar at high temperatures, leading to different phonon-induced disorder effects on the materials' electronic properties.
View Article and Find Full Text PDF

Due to their tantalizing prospect of heat-electricity interconversion, hybrid organic-inorganic perovskites have sparked considerable research interests recently. Nevertheless, understanding their complex interplay between the macroscopic properties, nonintuitive transport processes, and basic chemical structures still remains far from completion, although it plays a fundamental role in systematic materials development. On the basis of multiscale first-principles calculations, this understanding is herein advanced by establishing a comprehensive picture consisting of atomic and charge dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • Thermoelectric materials convert heat to electricity and have potential uses in power generation and refrigeration, but developing new high-performance materials has been slow and costly.
  • Recent advances in machine learning (ML) have made it easier to study and optimize the properties of thermoelectric materials, aiding in the prediction of their electrical and thermal transport characteristics.
  • The paper highlights recent ML applications in thermoelectric research and discusses potential future directions for further development in this field.
View Article and Find Full Text PDF

Decomposition of the polycation AlO(OH)(HO) (Al) promoted by ligand is a vital subject to advance our understanding of natural and artificial occurrence and evolution of aluminum ions, especially in the case of acidic condition that dissolved Al species can be released from the Al-bearing substances. However, the microscopic pathway of synchronous proton-promoted and ligand-promoted decomposition process for Al is still in the status of ambiguity. Herein, we applied differential mass spectrometry method and DFT calculation to study the initial detailed process of Al decomposition under the presence of proton and salicylic acid (HSal).

View Article and Find Full Text PDF

We demonstrate the use of functional-unit-based material design for thermoelectrics. This is an efficient approach for identifying high-performance thermoelectric materials, based on the use of combinations of functional fragments relevant to desired properties. Here, we reveal that linear triatomic resonant bonds (LTRBs) found in some Zintl compounds provide strong anisotropy both structurally and electronically, along with strong anharmonic phonon scattering.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the temperature dependence of the band gap in all-inorganic perovskites, like CsPbI, is crucial for their use in various optoelectronic and photovoltaic applications.
  • A recent study shows that as temperature increases from 300 K to 750 K, the band gap of perovskites changes due to structural fluctuations, particularly noting a significant difference at high temperatures (around 177 meV at 600 K).
  • Despite these changes, the band gap only slightly increases with rising temperatures (about 26 meV from 600 K to 750 K), indicating that the structural fluctuations are not very sensitive to temperature changes due to the stable chemical properties of the Pb-I bonds.
View Article and Find Full Text PDF

The recently discovered hybrid organic-inorganic perovskites have been suggested for high-performance optoelectronic applications. Owing to the mechanical flexibility of these compounds, they demonstrate structural fluctuation at finite temperatures that have been widely discussed with respect to their optical properties. However, the effect of temperature-induced structural fluctuation is not clear until now, with respect to the equally important charge transport properties.

View Article and Find Full Text PDF

Temperature dependence of band gap is one of the most fundamental properties for semiconductors, and has strong influences on many applications. The renormalization of the band gap at finite temperatures is due to the lattice expansion and the phonon-induced atomic vibrations. In this work, we apply the recently-developed electron-phonon renormalization (EPR) method to study the temperature-dependent band gap in some classical covalent (diamond, Si, and SiC) and ionic semiconductors (MgO and NaCl).

View Article and Find Full Text PDF

Non-covalent interactions between ions and π systems play an important role in molecular recognition, catalysis and biology. To guide the screen and design for artificial hosts, catalysts and drug delivery, understanding the physical nature of ion-π complexes via descriptors is indispensable. However, even with multiple descriptors that contain the leading term of electrostatic and polarized interactions, the quantitative description for the binding energies (BEs) of ion-π complexes is still lacking because of the intrinsic shortcomings of the commonly used descriptors.

View Article and Find Full Text PDF

Within the past few years, intriguing graphene Dirac cones have attracted intense interest in novel two-dimensional (2D) Dirac materials as ultrahigh-mobility functional materials. In this work, the phonon-limited charge transport properties of α-graphyne (α-GY), α-graphdiyne (α-GDY), and β-graphyne (β-GY) were investigated using the Boltzmann transport equation within the first-principles framework while considering the electron-phonon coupling (EPC). Despite all three investigated compounds being 2D Dirac carbon materials, each demonstrated distinctly different carrier mobilities by one order of magnitude (2.

View Article and Find Full Text PDF

Identifying strategies for beneficial band engineering is crucial for the optimization of thermoelectric (TE) materials. In this study, we demonstrate the beneficial effects of ionic dopants on n-type Mg Sb . Using the band-resolved projected crystal orbital Hamilton population, the covalent characters of the bonding between Mg atoms at different sites are observed.

View Article and Find Full Text PDF

High-throughput (HTP) material design is an emerging field and has been proved to be powerful in the prediction of novel functional materials. In this work, an HTP effort has been carried out for thermoelectric chalcogenides with diamond-like structures on the newly established Materials Informatics Platform (MIP). Specifically, the relaxation time is evaluated by a reliable yet efficient method, which greatly improves the accuracy of HTP electrical transport calculations.

View Article and Find Full Text PDF

Anion-π interaction is a new type of non-covalent interaction. It has attracted growing interest in recent years both theoretically and experimentally. However, the nature of bonding between an anion and an electron-deficient aromatic system has remained elusive.

View Article and Find Full Text PDF

Both intrinsic and extrinsic charge transport properties of methylammonium lead triiodide perovskites are investigated from first-principles. The weak electron-phonon couplings are revealed, with the largest deformation potential (~ 5 eV) comparable to that of single layer graphene. The intrinsic mobility limited by the acoustic phonon scattering is as high as a few thousands cm(2) V(-1) s(-1) with the hole mobility larger than the electron mobility.

View Article and Find Full Text PDF

Tuning carrier concentration via chemical doping is the most successful strategy to optimize the thermoelectric figure of merit. Nevertheless, how the dopants affect charge transport is not completely understood. Here we unravel the doping effects by explicitly including the scattering of charge carriers with dopants on thermoelectric properties of poly(3,4-ethylenedioxythiophene), PEDOT, which is a p-type thermoelectric material with the highest figure of merit reported.

View Article and Find Full Text PDF

Pentacene derivative 6,13-dichloropentacene (DCP) is one of the latest additions to the family of organic semiconductors with a great potential for use in transistors. We carry out a detailed theoretical calculation for DCP, with systematical comparison to pentacene, pentathienoacene (PTA, the thiophene equivalent of pentacene), to gain insights in the theoretical design of organic transport materials. The charge transport parameters and carrier mobilities are investigated from the first-principles calculations, based on the widely used Marcus electron transfer theory and quantum nuclear tunneling model, coupled with random walk simulation.

View Article and Find Full Text PDF

Electron-phonon couplings and charge transport properties of α- and γ-graphyne nanosheets were investigated from first-principles calculations by using the density-functional perturbation theory and the Boltzmann transport equation. Wannier function-based interpolation techniques were applied to obtain the ultra-dense electron-phonon coupling matrix elements. Due to the localization feature in Wannier space, the interpolation based on truncated space is found to be accurate.

View Article and Find Full Text PDF

Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states.

View Article and Find Full Text PDF

We investigated the composition-dependent electronic properties of two-dimensional transition-metal dichalcogenide alloys (WxMo1-xS2) based on first-principles calculations by applying the supercell method and effective band structure approximation. It was found that hole effective mass decreases linearly with increasing W composition, and electron effective mass of alloys is always larger than that of their binary constituents. The different behaviors of electrons and holes in alloys are attributed to the fact that metal d-orbitals have different contributions to conduction bands of MoS2 and WS2 but almost identical contributions to valence bands.

View Article and Find Full Text PDF

We show here that the carrier mobility in the novel sp-sp(2) hybridization planar 6,6,12-graphyne sheet should be even larger than that in the graphene sheet. Both graphyne and graphene exhibit a Dirac cone structure near the Fermi surface. However, due to the sp-sp(2) hybridization forming the triple bonds in graphyne, the electron-phonon scattering is reduced compared with that of graphene.

View Article and Find Full Text PDF

Band gap engineering of atomically thin two-dimensional (2D) materials is the key to their applications in nanoelectronics, optoelectronics, and photonics. Here, for the first time, we demonstrate that in the 2D system, by alloying two materials with different band gaps (MoS2 and WS2), tunable band gap can be obtained in the 2D alloys (Mo(1-x)W(x)S(2) monolayers, x = 0-1). Atomic-resolution scanning transmission electron microscopy has revealed random arrangement of Mo and W atoms in the Mo(1-x)W(x)S(2) monolayer alloys.

View Article and Find Full Text PDF

Thermoelectric energy converters can directly convert heat to electricity using semiconducting materials via the Seebeck effect and electricity to heat via the Peltier effect. Their efficiency depends on the dimensionless thermoelectric figure of merit of the material, which is defined as zT = S(2)σT/κ with S, σ, κ, and T being the Seebeck coefficient, electrical conductivity, thermal conductivity, and absolute temperature respectively. Organic materials for thermoelectric applications have attracted great attention.

View Article and Find Full Text PDF

We summarize our recent progresses in developing first-principles methods for predicting the intrinsic charge mobility in carbon and organic nanomaterials, within the framework of Boltzmann transport theory and relaxation time approximation. The electron-phonon couplings are described by Bardeen and Shockley's deformation potential theory, namely delocalized electrons scattered by longitudinal acoustic phonons as modeled by uniform lattice dilation. We have applied such methodology to calculating the charge carrier mobilities of graphene and graphdiyne, both sheets and nanoribbons, as well as closely packed organic crystals.

View Article and Find Full Text PDF