With the rising prevalence of bone-related injuries, it is crucial to improve treatments for fractures and defects. Tissue engineering offers a promising solution in the form of injectable hydrogel scaffolds that can sustain the release of growth factors like bone morphogenetic protein-2 (BMP-2) for bone repair. Recently, we discovered that tetra-PEG hydrogels (Tetra gels) undergo gel-gel phase separation (GGPS) at low polymer content, resulting in hydrophobicity and tissue affinity.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2023
Visualizing polymer chain growth is always a hot topic for tailoring structure-function properties in polymer chemistry. However, current characterization methods are limited in their ability to differentiate the degree of polymerization in real-time without isolating the samples from the reaction vessel, let alone to detect insoluble polymers. Herein, a reliable relationship is established between polymer chain growth and fluorescence properties through polymerization induced emission.
View Article and Find Full Text PDFFour-armed poly(ethylene glycol) (PEG)s are essential hydrophilic polymers extensively utilized to prepare PEG hydrogels, which are valuable tissue scaffolds. When hydrogels are used , they eventually dissociate due to cleavage of the backbone structure. When the cleavage occurs at the cross-linking point, the hydrogel elutes as an original polymer unit, i.
View Article and Find Full Text PDFA diselenide bond, as a dynamic covalent bond, is a versatile tool to construct smart interfaces, which can respond to visible light. In this work, we used microcontact printing (μCP) to construct diselenide patterns on quartz substrates. Fluorescent patterns were obtained on the modified surfaces via the visible-light-induced diselenide metathesis reaction, which allowed the patterning process to be fast, dynamically erasable, and compatible with different fluorescent molecules including rhodamine B and boron-dipyrromethene (BODIPY) used in this work.
View Article and Find Full Text PDFOsteopontin (OPN), a secreted phosphoprotein, is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family of cell matrix proteins and participates in many biological activities. Studies have shown that OPN plays a role in bone metabolism and homeostasis. OPN not only is an important factor in neuron-mediated and endocrine-regulated bone mass, but also is involved in biological activities such as proliferation, migration, and adhesion of several bone-related cells, including bone marrow mesenchymal stem cells, hematopoietic stem cells, osteoclasts, and osteoblasts.
View Article and Find Full Text PDFBackground And Purpose: Melatonin is a neurohormone involved in bone homeostasis. Melatonin directs bone remodelling and the role of bone marrow mesenchymal stem cells (BMMSCs) in the regulating melatonin-mediated bone formation-resorption balance remains undefined.
Experimental Approach: Osteoporosis models were established and bone tissue and serum were collected to test the effects of melatonin on bone homeostasis.
Recently, peroxymonosulfate (PMS)-based advanced oxidation processes have exhibited broad application prospects in the environment field. Accordingly, a simple, rapid, and ultrasensitive method is highly desired for the specific recognition and accurate quantification of PMS in various aqueous solutions. In this work, SO-induced aromatic hydroxylation was explored, and based on that, for the first time, a novel fluorescence method was developed for the PMS determination using Co as a PMS activator and benzoic acid (BA) as a chemical probe.
View Article and Find Full Text PDF