Publications by authors named "Jinxuan Jia"

Surgical excision remains the principal treatment for melanoma, while tumor recurrence and delayed wound healing often occur due to the residual tumor cells and hypoxic microenvironment in the postoperative skin wounds. Herein, we present a living photosynthetic microneedle (MN) patch (namely MA/CM@MN) loaded with microalgae (MA) and cuttlefish melanin (CM) for postsurgical melanoma therapy and skin wound healing. Benefiting from the oxygenic photosynthesis of the alive MA in the MN base, the MA/CM@MN can generate oxygen under light exposure, thus facilitating skin cell proliferation and protecting cells against hypoxia-induced cell death.

View Article and Find Full Text PDF

Hydrogel-based microcarriers have demonstrated effectiveness in wound repair treatments. The current research focus is creating and optimizing active microcarriers containing natural ingredients capable of conforming to diverse wound shapes and depths. Here, microalgae (MA)-loaded living alginate hydrogel microspheres were successfully fabricated via microfluidic electrospray technology, to enhance the effectiveness of wound healing.

View Article and Find Full Text PDF

Engineered microorganisms have attracted significant interest as a unique therapeutic platform in tumor treatment. Compared with conventional cancer treatment strategies, engineering microorganism-based systems provide various distinct advantages, such as the intrinsic capability in targeting tumors, their inherent immunogenicity, in situ production of antitumor agents, and multiple synergistic functions to fight against tumors. Herein, the design, preparation, and application of the engineered microorganisms for advanced tumor therapy are thoroughly reviewed.

View Article and Find Full Text PDF

Biological scaffolds have been widely employed in wound healing applications, while their practical efficiency is compromised by insufficient oxygen delivery to the 3-dimensional constructs and inadequate nutrient supply for the long-term healing process. Here, we present an innovative living Chinese herbal scaffold to provide a sustainable oxygen and nutrient supply for promoting wound healing. Through a facile microfluidic bioprinting strategy, a traditional Chinese herbal medicine ( saponins [PNS]) and a living autotrophic microorganism (microalgae [MA]) were successfully encapsulated into the scaffolds.

View Article and Find Full Text PDF

Biological organisms play important roles in human health, either in a commensal or pathogenic manner. Harnessing inactivated organisms or living organisms is a promising way to treat diseases. As two types of freezing, cryoablation makes it simple to inactivate organisms that must be in a non-pathogenic state when needed, while cryopreservation is a facile way to address the problem of long-term storage challenged by living organism-based therapy.

View Article and Find Full Text PDF