Publications by authors named "Jinxuan Hu"

The use of waste polyethylene (WPE) in modified asphalt is frequently employed to reduce environmental pollution and improve asphalt properties. However, research has shown that using WPE alone as a modifier does not effectively enhance the low-temperature flexibility of asphalt. This study aims to investigate the potential of utilizing WPE and waste cooking oil (WCO) as composite modifiers to enhance the properties of virgin asphalt under both high and low-temperature conditions.

View Article and Find Full Text PDF

The freshness of vegetable soybean (VS) is an important indicator for quality evaluation. Currently, deep learning-based image recognition technology provides a fast, efficient, and low-cost method for analyzing the freshness of food. The RGB (red, green, and blue) image recognition technology is widely used in the study of food appearance evaluation.

View Article and Find Full Text PDF

Widespread interest has been drawn to the use of solid waste fillers as a partial replacement for natural fillers in high-performance asphalt mixtures in recent years. However, variations in the material properties of solid waste fillers remain a problem for the recycling method. To address this issue, the limestone powder in asphalt mixtures was replaced with three solid waste fillers, including steel slag powder, tailings powder and calcium carbide slag powder in this study.

View Article and Find Full Text PDF

The accumulation of steel slag and other industrial solid wastes has caused serious environmental pollution and resource waste, and the resource utilization of steel slag is imminent. In this paper, alkali-activated ultra-high-performance concrete (AAM-UHPC) was prepared by replacing ground granulated blast furnace slag (GGBFS) powder with different proportions of steel slag powder, and its workability, mechanical properties, curing condition, microstructure, and pore structure were investigated. The results illustrate that the incorporation of steel slag powder can significantly delay the setting time and improve the flowability of AAM-UHPC, making it possible for engineering applications.

View Article and Find Full Text PDF

The determination of charged particle trajectories in collisions at the CERN Large Hadron Collider (LHC) is an important but challenging problem, especially in the high interaction density conditions expected during the future high-luminosity phase of the LHC (HL-LHC). Graph neural networks (GNNs) are a type of geometric deep learning algorithm that has successfully been applied to this task by embedding tracker data as a graph-nodes represent hits, while edges represent possible track segments-and classifying the edges as true or fake track segments. However, their study in hardware- or software-based trigger applications has been limited due to their large computational cost.

View Article and Find Full Text PDF
Article Synopsis
  • Using phase change materials (PCMs) in building designs enhances indoor comfort and lowers energy use.
  • This research introduced a new composite PCM made from molecular-bridged expanded graphite and polyethylene glycol, created using a vacuum absorption method.
  • The study found that this modified PCM improves thermal energy storage efficiency, reduces supercooling by about 3 °C, and has thermal conductivities 10 times higher than standard PEGs, allowing for quicker temperature adjustments in buildings.
View Article and Find Full Text PDF

The aging effect of ultraviolet (UV) radiation on bitumen has gained increasing attention from researchers, resulting in the emergence of a new method to simulate the UV aging that occurs during the service life of bitumen. However, the UV aging degree is closely related to bitumen thickness and the effect of UV radiation on aging depth is not clear. The relationship between ultraviolet (UV) radiation and bitumen UV aging depth was investigated in this paper.

View Article and Find Full Text PDF

Inhibition of β-site APP cleaving enzyme 1 (BACE1) is being pursued as a therapeutic target for treating patients with Alzheimer's disease because BACE1 is the sole β-secretase for generating β-amyloid peptide. Knowledge regarding the other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination in injured sciatic nerves.

View Article and Find Full Text PDF

BACE1 is a type I transmembrane aspartyl protease that cleaves amyloid precursor protein at the β-secretase site to initiate the release of β-amyloid peptide. As a secretase, BACE1 also cleaves additional membrane-bound molecules by exerting various cellular functions. In this study, we showed that BACE1 can effectively shed the membrane-anchored signaling molecule Jagged 1 (Jag1).

View Article and Find Full Text PDF

Spent sorbents in water treatment processes have potential risks to the environment if released without proper treatment. The aim of this work was to investigate the potential regeneration of commercially prepared nano-TiO2 (anatase) for the removal of Pb (II), Cu (II), and Zn (II) by pH 2 and ethylenediaminetetraacetic acid (EDTA) solutions. The percent of metal adsorption/desorption decreased with the increasing number of regeneration cycles, and the extent of decrease varied for each metal.

View Article and Find Full Text PDF

The adsorption-desorption of toxic compounds onto engineered nanoparticles is an important process that governs their potential as sorbents for treatment applications, their toxicity and their environmental risks. This study was aimed to investigate the desorption of Pb (II), Cu (II) and Zn (II) from commercially prepared nano-TiO(2) (anatase) using batch techniques, with the evaluation of isothermal, kinetic and thermodynamic properties. Results showed that desorption was pH dependent and that more than 98% of all metals desorbed at pH 2.

View Article and Find Full Text PDF

The use of commercially prepared hematite nanoparticles (37.0 nm) was studied as an adsorbent in the removal of Cd(II), Cu(II), Pb(II), and Zn(II) from aqueous solutions. Single-metal adsorption was studied as a function of metal and adsorbent concentrations, whereas binary metal competition was found to be dependent on the molar ratio between the competing metals.

View Article and Find Full Text PDF