Nanomaterials (Basel)
November 2022
A flexible thermoelectric device has been considered as a competitive candidate for powering wearable electronics. Here, we fabricated an n-type AgSe/Ag composite film on a flexible nylon substrate using vacuum-assisted filtration and a combination of cold and hot pressing. By optimising the Ag/Se ratio and the sequential addition and reaction time of AA, an excellent power factor of 2277.
View Article and Find Full Text PDFThe in situ characterization on the individuals offers an effective way to explore the dynamic behaviors and underlying physics of materials at the nanoscale, and this is of benefit for actual applications. In the field of vacuum micro-nano electronics, the existing in situ techniques can obtain the material information such as structure, morphology and composition in the process of electron emission driven by a single source of excitation. However, the relevant process and mechanism become more complicated when two or more excitation sources are commonly acted on the emitters.
View Article and Find Full Text PDFRechargeable lithium batteries are the most practical and widely used power sources for portable and mobile devices in modern society. Manipulation of the electronic and ionic charge transport and accumulation in solid materials has always been crucial for rechargeable lithium batteries. The transport and accumulation of lithium ions in electrode materials, which is a diffusion process, is determined by the concentration distribution of lithium ions and the intrinsic structure of the electrode material and thus far has not been manipulated by an external force.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2019
Defects engineering can broaden the absorption band of wide band gap van der Waals (vdW) materials to the visible or near-IR regime at the expense of material stability and photoresponse speed. Herein, we introduce an atomic intercalation method that brings the wide band gap vdW α-MoO for vis-MIR broadband optoelectronic conversion. We confirm experimentally that intercalation significantly enhances photoabsorption and electrical conductivity buts effects negligible change to the lattice structure as compared with ion intercalation.
View Article and Find Full Text PDFLight-driven electron emission plays an important role in modern optoelectronic devices. However, such a process usually requires a light field with either a high intensity or a high frequency, which is not favorable for its implementations and difficult for its integrations. To solve these issues, we propose to combine plasmonic nanostructures with nanoelectron emitters of low work function.
View Article and Find Full Text PDFLight-matter resonance coupling is a long-studied topic for both fundamental research and photonic and optoelectronic applications. Here we investigated the resonance coupling between the magnetic dipole mode of a dielectric nanosphere and 2D excitons in a monolayer semiconductor. By coating an individual silicon nanosphere with a monolayer of WS, we theoretically demonstrated that, because of the strong energy transfer between the magnetic dipole mode of the nanosphere and the A-exciton in WS, resonance coupling evidenced by anticrossing behavior in the scattering energy diagram was observed, with a mode splitting of 43 meV.
View Article and Find Full Text PDFSensors (Basel)
October 2018
Plasmonic gold nanorods play important roles in nowadays state-of-the-art plasmonic sensing techniques. Most of the previous studies and applications focused on gold nanorods with relatively small aspect ratios, where the plasmon wavelengths are smaller than 900 nm. Gold nanorods with large aspect ratios are predicted to exhibit high refractive-index sensitivity (Langmir 2008, 24, 5233⁻5237), which therefore should be promising for the development of high-performance plasmonic chemical- and bio-sensors.
View Article and Find Full Text PDFBoron is a narrow-bandgap (1.56 eV) semiconductor with high melting-point, low-density, large Young's modulus and very high refractive index (3.03) close to silicon.
View Article and Find Full Text PDFStrong light-matter coupling manifested by Rabi splitting has attracted tremendous attention due to its fundamental importance in cavity quantum-electrodynamics research and great potentials in quantum information applications. A prerequisite for practical applications of the strong coupling in future optoelectronic devices is an all-solid-state system exhibiting room-temperature Rabi splitting with active control. Here we realized such a system in heterostructure consisted of monolayer WS and an individual plasmonic gold nanorod.
View Article and Find Full Text PDFUnderstanding the influence of grain boundaries (GBs) on the electrical and thermal transport properties of graphene films is essentially important for electronic, optoelectronic and thermoelectric applications. Here we report a segregation-adsorption chemical vapour deposition method to grow well-stitched high-quality monolayer graphene films with a tunable uniform grain size from ∼200 nm to ∼1 μm, by using a Pt substrate with medium carbon solubility, which enables the determination of the scaling laws of thermal and electrical conductivities as a function of grain size. We found that the thermal conductivity of graphene films dramatically decreases with decreasing grain size by a small thermal boundary conductance of ∼3.
View Article and Find Full Text PDFAbstract: For the first time, Mo nanoscrew was cultivated as a novel non-coinage-metal substrate for surface-enhanced Raman scattering (SERS). It was found that the nanoscrew is composed of many small screw threads stacking along its length direction with small separations. Under external light excitation, strong electromagnetic coupling was initiated within the gaps, and many hot-spots formed on the surface of the nanoscrew, which was confirmed by high-resolution scanning near-field optical microscope measurements and numerical simulations using finite element method.
View Article and Find Full Text PDFDue to their optical magnetic and electric resonances associated with the high refractive index, dielectric silicon nanoparticles have been explored as novel nanocavities that are excellent candidates for enhancing various light-matter interactions at the nanoscale. Here, from both of theoretical and experimental aspects, we explored resonance coupling between excitons and magnetic/electric resonances in heterostructures composed of the silicon nanoparticle coated with a molecular J-aggregate shell. The resonance coupling was originated from coherent energy transfer between the exciton and magnetic/electric modes, which was manifested by quenching dips on the scattering spectrum due to formation of hybrid modes.
View Article and Find Full Text PDFThe electrical performance of highly crystalline monolayer MoS2 is remarkably enhanced by a self-limited growth strategy on octadecyltrimethoxysilane self-assembled monolayer modified SiO2 /Si substrates. The scattering mechanisms in low-κ dielectric, including the dominant charged impurities, acoustic deformation potentials, optical deformation potentials), Fröhlich interaction, and the remote interface phonon interaction in dielectrics, are quantitatively analyzed.
View Article and Find Full Text PDFA facile all-chemical vapor deposition approach is designed, which allows both sequentially grown Gr and monolayer MoS2 in the same growth process, thus allowing the direct construction of MoS2 /Gr vertical heterostructures on Au foils. A weak n-doping effect and an intrinsic bandgap of MoS2 are obtained from MoS2 /Gr/Au via scanning tunneling microscopy and spectroscopy characterization. The exciton binding energy is accurately deduced by combining photoluminescence measurements.
View Article and Find Full Text PDFLateral WS2-MoS2 heterostructures are synthesized by a shortcut one-step growth recipe with low-cost and soluble salts. The 2D spatial distributions of the built-in potential and the related electric field of the lateral WS2-MoS2 heterostructure are quantitatively analyzed by scanning Kelvin probe force microscopy revealing the fundamental attributes of the lateral heterostructure devices.
View Article and Find Full Text PDFFormation of heterojunctions of transition metal dichalcogenides (TMDs) stimulates wide interest in new device physics and technology by tuning optical and electronic properties of TMDs. TMDs heterojunctions are of scientific and technological interest for exploration of next generation flexible electronics. Herein, we report on a two-step epitaxial ambient-pressure CVD technique to construct in-plane MoS2-WS2 heterostructures.
View Article and Find Full Text PDF