Lotus (Nelumbo Adans.), a relict plant, is the testimony of long-term sustained ecological success, but the underlying genetic changes related to its survival strategy remains unclear. Here, we assembled the high-quality lotus genome, investigated genome variation of lotus mutation accumulation (MA) lines and reconstructed the demographic history of wild Asian lotus, respectively.
View Article and Find Full Text PDFTwenty-two sacred lotus (Nelumbo nucifera), 46 taros (Colocasia esculenta) and 10 arrowheads (Sagittaria trifolia) were used as materials and combined with EST-SSR (expressed sequence tag-simple sequence repeats) primers developed by our laboratory. Core primers were screened from a large number of primers that were able to distinguish all materials with a high frequency of polymorphisms. Six pairs, twenty pairs and three pairs of core primers were screened from sacred lotus, taro, and arrowhead, respectively.
View Article and Find Full Text PDFZhongguo Zhong Xi Yi Jie He Za Zhi
December 2015
Objective: To evaluate the application effect of Chinese medical clinical pathway for treating attention-deficit hyperactivity disorder (ADHD), and to provide evidence for further improving clinical pathways.
Methods: Totally 270 ADHD children patients were recruited and treated at pediatrics clinics of 9 cooperative hospitals from December 2011 to December 2012. The treatment course for all was 3 months.
The discovery of novel scaffolds against a specific target has long been one of the most significant but challengeable goals in discovering lead compounds. A scaffold that binds in important regions of the active pocket is more favorable as a starting point because scaffolds generally possess greater optimization possibilities. However, due to the lack of sufficient chemical space diversity of the databases and the ineffectiveness of the screening methods, it still remains a great challenge to discover novel active scaffolds.
View Article and Find Full Text PDFThe bromodomain is a key protein-protein interaction module that specifically reads the acetylation marks of histones in epigenetic regulation. Currently, lots of inhibitors targeting the bromodomain have been reported as therapeutic agents. To better understand the interaction mechanism of bromodomain inhibitors, 20 diverse bromodomain inhibitors were studied using a combination of computational methods, including molecular docking, interaction fingerprinting, molecular dynamics simulation and binding free energy calculation.
View Article and Find Full Text PDFSodium-dependent glucose cotransporters (SGLTs) play an important role in glucose reabsorption in the kidney and have been identified as promising targets to treat diabetes. Because of the side effects like glucose and galactose malabsorption by targeting SGLT1, highly selective SGLT2 inhibitors are more promising in the treatment of diabetes. To understand the mechanism of selectivity, we conducted selectivity-based three-dimensional quantitative structure-activity relationship studies to highlight the structure requirements for highly selective SGLT2 inhibitors.
View Article and Find Full Text PDFc-Met has been considered as an attractive target for developing antitumor agents. The highly selective c-Met inhibitors provide invaluable opportunities for the combination with other therapies safely to achieve the optimal efficacy. In this work, a series of triazolopyrazine c-Met inhibitors with exquisitely selectivity were investigated using a combination of molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR), and molecular dynamics simulation.
View Article and Find Full Text PDFG protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFAR1) is a member of the GPCR superfamily, and GPR40 agonists have therapeutic potential for type 2 diabetes. With the crystal structure of GPR40 currently unavailable, various ligand-based virtual screening approaches can be applied to identify novel agonists of GPR40. It is known that each ligand-based method has its own advantages and limitations.
View Article and Find Full Text PDFIn recent years, various virtual screening (VS) tools have been developed, and many successful screening campaigns have been showcased. However, whether by conventional molecular docking or pharmacophore screening, the selection of virtual hits is based on the ranking of compounds by scoring functions or fit values, which remains the bottleneck of VS due to insufficient accuracy. As the limitations of individual methods persist, a comprehensive comparison and integration of different methods may provide insights into selecting suitable methods for VS.
View Article and Find Full Text PDFJ Comput Aided Mol Des
October 2013
Fragment-based drug design has emerged as an important methodology for lead discovery and drug design. Different with other studies focused on fragment library design and active fragment identification, a fragment-based strategy was developed in combination with three-dimensional quantitative structure-activity relationship (3D-QSAR) for structural optimization in this study. Based on a validated scaffold or fragment hit, a series of structural optimization was conducted to convert it to lead compounds, including 3D-QSAR modelling, active site analysis, fragment-based structural optimization and evaluation of new molecules.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.