Publications by authors named "Jinxia Ma"

The development of high-performance cellulose-based sensors with superior interfacial compatibility, flexibility, and strength has always been challenging. Drawing inspiration from the intricate multiscale hierarchy found in resilient natural materials, the incorporation of this structure into cellulose-based hydrogels using biomimetic strategies is anticipated to enhance their properties. Therefore, the cellulose/polyacrylamide (PAM) hybrid hydrogels are fabricated using the aqueous AlCl/ZnCl system through an all-green one-pot method at room temperature, achieving efficient dissolution of cellulose at multiple scales and in-situ polymerization of polyacrylamide.

View Article and Find Full Text PDF

Black liquor, primarily consisting of lignin, polysaccharides, and inorganic substances, is a potential precursor of porous carbon materials for high-performance supercapacitors. However, the laborious purification of black liquor lignin and the introduction of exogenous heteroatoms have hindered their practical applications. Herein, the full components of black liquor were utilized to synthesize hierarchical porous sulfur self-doped lignin carbons (S-LCs) through a self-activation process aimed at improving the performance of supercapacitors.

View Article and Find Full Text PDF

The mechanism underlying the interfacial interaction between ZnO and surface functional groups, which drives the self-assembly of ZnO nanoflowers on the cellulose nanofibril (CNF) surface, remains inadequately understood. Moreover, the ideal sites for the loading and growth of ZnO nanoflowers on the oxygen atoms (O) of various surface functional groups on the CNF surface are not well-defined. This work addressed these gaps by systematically regulating the size and surface charge density of CNF templates through minor surface modifications and adjustments in processing cycles by using an ultrafine grinder.

View Article and Find Full Text PDF

In the realization of the goal of circular economy, cellulose as one of sustainable biomass resources, have attracted much attention because of their abundant sources, biodegradability and renewability. However, the mechanical and waterproof performance of cellulose-based materials are usually not satisfying, which limits their high-value utilization. In this study, cellulose membrane with high-performance from the aspects of mechanical properties, water-resistance ability, oxygen barrier capacity and biodegradability, was prepared from bleached hardwood pulp (HBKP) in a AlCl/ZnCl/HO solution.

View Article and Find Full Text PDF
Article Synopsis
  • Cellulose is difficult to dissolve at room temperature due to its unique molecular structure, and this study proposes a new four-stage mechanism for its dissolution using ZnCl aqueous solution.
  • The four stages include the migration of hydrated Zn ions, penetration between cellulose sheets, interaction with cellulose hydroxyl groups, and dispersion of cellulose chains, which were supported by theoretical calculations and experimental results.
  • The ZnCl solution showed minimal cellulose degradation and high recycling efficiency (95%), offering a green and cost-effective method for dissolving cellulose while improving the mechanical properties of the regenerated material.
View Article and Find Full Text PDF

This study investigates the role of USP47, a deubiquitinating enzyme, in the tumor microenvironment and its impact on antitumor immune responses. Analysis of TCGA database revealed distinct expression patterns of USP47 in various tumor tissues and normal tissues. Prostate adenocarcinoma showed significant downregulation of USP47 compared to normal tissue.

View Article and Find Full Text PDF

The rapid and sensitive detection of genera is crucial for human disease and health. This study introduces a novel series of piezoelectric quartz crystal (SPQC) sensors for detecting genera. In this innovative biosensor, we propose a new target and novel method for synthesizing long-range DNA.

View Article and Find Full Text PDF

The green synthesis strategy for cellulose-containing hydrogel electrolytes is significant for effectively managing resources, energy, and environmental concerns in the contemporary world. Herein, we propose an all-green strategy using AlCl/ZnCl/HO solvent to create cellulose/polyacrylamide-based hydrogel (AZ-Cel/PAM) with expanded hierarchical topologies. The aqueous AlCl/ZnCl facilitates the efficient dissolution of cellulose at room temperature, and the dispersed Al-Zn ions autocatalytic system catalyzes in-situ polymerization of acrylamide (AM) monomer.

View Article and Find Full Text PDF

Background Aims: Accurate assessment of cell viability is crucial in cellular product manufacturing, yet selecting the appropriate viability assay presents challenges due to various factors. This study compares and evaluates different viability assays on fresh and cryopreserved cellular products, including peripheral blood stem cell (PBSC) and peripheral blood mononuclear cell (PBMC) apheresis products, purified PBMCs and cultured chimeric antigen receptor and T-cell receptor-engineered T-cell products.

Methods: Viability assays, including manual Trypan Blue exclusion, flow cytometry-based assays using 7-aminoactinomycin D (7-AAD) or propidium iodide (PI) direct staining or cell surface marker staining in conjunction with 7-AAD, Cellometer (Nexcelom Bioscience LLC, Lawrence, MA, USA) Acridine Orange/PI staining and Vi-CELL BLU Cell Viability Analyzer (Beckman Coulter, Inc, Brea, CA, USA), were evaluated.

View Article and Find Full Text PDF

Many metabolic diseases have been demonstrated to be associated with changes in the microbiome. However, no studies have yet been conducted to examine the characteristics of the mucosal microbiota of patients with hypercholesterolemia. We aimed to examine mucosa-associated microbiota in subjects with hypercholesterolemia.

View Article and Find Full Text PDF

A combination of multiple methods can greatly intensify the removal efficiency of hazardous substances. Herein, the synergistic utilization of adsorption and catalysis achieved for the highly efficient removal of hexavalent chromium (Cr). A paper-based palladium nanoparticles/UiO-66-NH (PdNPs/UiO-66-NH/LP) composite catalyst was prepared using lignocellulose paper-based material (LP) for the loading of UiO-66-NH MOFs materials, with the lignin in LP as the reducer for the in-situ synthesis of PdNPs (12.

View Article and Find Full Text PDF

Background: Small intestinal bacterial overgrowth (SIBO) is still difficult to diagnose. Quantitative culture of small intestine aspirate is recommended to be the gold standard. The methane and hydrogen breath tests are easily repeatable, sufficiently sensitive and highly specific for SIBO diagnosis.

View Article and Find Full Text PDF

From the perspective of environmental sustainability, introducing cellulose into ionic conductive hydrogel is an inevitable trend for the development of flexible conductive materials. We report a double-network cellulose/polyacrylic acid (Cel/PAA) composite hydrogel based on the dissolving of cellulose by AlCl/ZnCl aqueous system. The Cel/PAA composite hydrogel consists of rigid cellulose chains and flexible polyacrylic acid, which synergistically realize the improvement of the mechanical properties.

View Article and Find Full Text PDF

Using renewable biomass resources to regulate the growth and properties of catalysts is sustainable nanotechnology for achieving efficient photocatalysis and recycling. This work suggested a way to produce paper-based photocatalysts and resize the embedded zinc oxide (ZnO) flowers. The combination of experimental analysis and theoretical simulations demonstrated that small pores of the branching fiber network enhanced the interfacial interaction between ZnO flowers and cellulose fibers, thereby improving mechanical properties and optimizing flower structure.

View Article and Find Full Text PDF

Background Aims: Reference genes are an essential part of clinical assays such as droplet digital polymerase chain reaction (ddPCR), which measure the number of copies of vector integrated into genetically engineered cells and the loss of plasmids in reprogrammed cells used in clinical cell therapies. Care should be taken to select reference genes, because it has been discovered that there may be thousands of variations in copy number from genomic segments among different individuals. In addition, within the same person in the context of cancer and other proliferative disorders, substantial parts of the genome also can differ in copy number between cells from diseased and healthy people.

View Article and Find Full Text PDF

Herein, a novel method for dissolving lignocellulose at room temperature is proposed by combining deep eutectic solvents (DES) pretreatment and subsequent dissolution in AlCl/ZnCl aqueous system. Results showed that DES pretreatment could significantly increase the dissolubility of lignin-containing cellulose (CL) samples in AlCl/ZnCl aqueous system. The dissolution ratio of the CL sample with 15.

View Article and Find Full Text PDF

The morphology of metal oxide is a crucial factor for improving of catalysis properties. As a renewable and environmentally friendly biomass material, cellulose has been widely used to induce the morphology of semiconductors. The contributions of cellulose hydroxyl groups and spatial hindrance in tailoring Al doped ZnO (AZO) morphologies were investigated.

View Article and Find Full Text PDF

Serine-threonine kinase 10 (STK10) is a member of the STE20/p21-activated kinase (PAK) family and is predominantly expressed in immune organs. Our previous reports suggested that STK10 participates in the growth and metastasis of prostate cancer via in vitro and in vivo data. However, the correlation between STK10 and the tumor microenvironment (TME) remains unclear.

View Article and Find Full Text PDF

Background: Clinical CAR T-cell therapy using integrating vector systems represents a promising approach for the treatment of hematological malignancies. Lentiviral and γ-retroviral vectors are the most commonly used vectors in the manufacturing process. However, the integration pattern of these viral vectors and subsequent effect on CAR T-cell products is still unclear.

View Article and Find Full Text PDF

Background: Accumulating evidence has revealed that the gut microbiota influences the effectiveness of immune checkpoint inhibitors (ICIs) in cancer patients. As a part of the human microbiome, Helicobacter pylori (H. pylori) was reported to be associated with reduced effectiveness of anti-PD1 immunotherapy in patients with non-small-cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Background: Cytokine release syndrome (CRS) is a strong immune system response that can occur as a result of the reaction of a cellular immunotherapy with malignant cells. While the frequency and management of CRS in CAR T-cell therapy has been well documented, there is emerging interest in pre-emptive treatment to reduce CRS severity and improve overall outcomes. Accordingly, identification of genomic determinants that contribute to cytokine release may lead to the development of targeted therapies to prevent or abrogate the severity of CRS.

View Article and Find Full Text PDF

Cisplatin is a primary chemotherapeutic drug for gastric cancer (GC) patients, but the drug resistance remains the leading cause of treatment failure and high mortality. Curcumol is a bioactive sesquiterpenoid that has reportedly been linked to cisplatin sensitivity in GC. This study focuses on the exact functions of curcumol in the cisplatin sensitivity of GC cells and the molecules of action.

View Article and Find Full Text PDF

Studies have indicated that RIG-I may act as a tumor suppressor and participate in the tumorigenesis of some malignant diseases. However, RIG-I induces distinct cellular responses via different downstream signaling pathways depending on the cell type. To investigate the biological function and underlying molecular mechanism of RIG-I in the tumorigenesis of melanoma, we constructed RIG-I knockout, RIG-I-overexpressing B16-F10 and RIG-I knockdown A375 melanoma cell lines, and analyzed the RIG-I-mediated change in the biological behavior of tumor cells in spontaneous and poly (I:C)-induced RIG-I activation.

View Article and Find Full Text PDF

The poor dispersibility and re-dispersibility of cellulose nanofibrils (CNFs) in various solvents and polymers have been recognized as the key factors limiting their potential applications. TEMPO oxidation, as the most common surface modification, can greatly improve the dispersion and re-dispersion of CNFs. However, the diameter of TEMPO-oxidized cellulose nanofibers (TOCNFs) has not been regulated in most researches, which was an important factor determining the dispersion and re-dispersion of TOCNFs.

View Article and Find Full Text PDF

To achieve the balance on economy and ecology, it is indispensable to explore the greener and more inexpensive method for the production of cellulose nanofibrils (CNFs). Herein, a deep eutectic solvent (DES) system based on choline chloride (ChCl) and ethylene glycol (EG) was employed as the swollen solvent, combining with screw extrusion and permeant, to fabricate unmodified CNFs with high yield and thermal stability. The proposed method in this work was simple, convenient, and industrially viable.

View Article and Find Full Text PDF