Exosomes play a role in cell communication by transporting content between cells. Here, we tested whether renal podocyte-derived exosomes affect the injury of glomerular endothelial cells in lupus nephritis (LN). We found that exosomes containing high levels of high mobility group protein B1 (HMGB1) were released from podocytes in patients with LN, BALB/c mice injected with pristane (which induces lupus-like disease in mice), and cultured human renal glomerular endothelial cells (HRGECs) treated with LN plasma.
View Article and Find Full Text PDFBackground: Anxiety disorder is one of the most common mental disorders and often accompanied with sleep disturbance which can in turn exacerbate anxiety symptoms, creating a vicious cycle. In addition to psychopharmacological therapy, the effectiveness of psychotherapy as cognitive behavioral therapy (CBT) for treating anxiety disorders and insomnia has been well documented and widely accepted, but it is labor-intensive and costly. However, virtual reality (VR)-integrated CBT may improve this condition but needs more evidences to support its extensive application in routine clinical practice.
View Article and Find Full Text PDFHormesis, an adaptive response, occurs when exposure to low doses of a stressor potentially induces a stimulatory effect, while higher doses may inhibit it. This phenomenon is widely observed across various organisms and stressors, significantly advancing our understanding and inspiring further exploration of the beneficial effects of toxins at doses both below and beyond traditional thresholds. This has profound implications for promoting biological regulation at the cellular level and enhancing adaptability throughout the biosphere.
View Article and Find Full Text PDFChemodynamic therapy (CDT) based on intracellular Fenton reaction to produce highly cytotoxic reactive oxygen species (ROS) has played an essential role in tumor therapy. However, this therapy still needs to be improved by weakly acidic pH and over-expression of glutathione (GSH) in tumor microenvironment (TEM), which hinders its future application. Herein, we reported a multifunctional bimetallic composite nanoparticle MnO@GA-Fe@CAI based on a metal polyphenol network (MPN) structure, which could reduce intracellular pH and endogenous GSH by remodeling tumor microenvironment to improve Fenton activity.
View Article and Find Full Text PDFThe wet environment of water or tissue in bleeding wounds poses significant challenges to the adhesion performance of existing hemostatic adhesives. An intelligent composite adhesive prepared by doping starch-based silicate micro-nanograded porous particles (MBC@CMS) with dopamine-hyperbranched polymers (HPD, 7800 ) synthesized by the Michael addition reaction could be triggered by water to form a glue (MBC@CMS-HPD). The results indicated that MBC@CMS-HPD could still have adhesion properties under running water washing and water immersion and could effectively seal the water outlet.
View Article and Find Full Text PDFIn daily life and during surgery, the skin, as the outermost organ of the human body, is easily damaged to form wounds. If the wound was infected by the bacteria, especially the drug-resistant bacteria such as methicillin-resistant staphylococcus aureus (MRSA), it was difficult to recover. Therefore, it was important to develop the safe antimicrobial strategy to inhibit bacterial growth in the wound site, in particular, to overcome the problem of bacterial drug resistance.
View Article and Find Full Text PDFThe number of patients with non-healing wounds is generally increasing globally, placing a huge social and economic burden on every country. The complexity of the wound-healing process remains a major health challenge despite the numerous studies that have been reported on conventional wound dressings. Therefore, a therapeutic system that combines diagnostic and therapeutic modalities is essential to monitor wound-related biomarkers and facilitate wound healing in real time.
View Article and Find Full Text PDFInt J Biol Macromol
March 2023
Hypoxia is a major stressor and a prominent feature of pathological conditions, such as bacterial infections, inflammation, wounds, and cardiovascular defects. In this study, we investigated whether reoxygenation has a protective effect against hypoxia-induced acute injury and burn using the C57BL/6 mouse model. C57BL/6 mice were exposed to hypoxia and treated with both acute and burn injuries and were in hypoxia until wound healing.
View Article and Find Full Text PDFCancer seriously endangers human life and health. Recently, the development of AIEgens with aggregation-induced emission (AIE) effect as a new generation of photosensitizers (PSs) to circumvent aggregation-induced fluorescence quenching and reduction of ROS generation has received extensive attention in photodynamic therapy (PDT), a non-invasive anticancer therapy. Rational molecular design can enhance the photosensitization of AIE PSs to achieve effective PDT and can realize the construction of functionalized AIE PSs and synergistic therapy based on AIE PSs.
View Article and Find Full Text PDFActa Biomater
December 2022
Hypoxic nonhealing wounds are a common complication in chronic patients, and chronic hypoxia is the main reason for delayed wound healing, so local wound oxygenation may be an effective way to address this problem. Here, we proposed a system consisting of oxygen-releasing microsphere (GC) and self-healing hydrogel (QGO). QGO/GC hydrogel could promote survival, migration and tube formation of human umbilical vein endothelial cells under hypoxic conditions.
View Article and Find Full Text PDFBiomolecules
September 2022
Diabetes-related chronic wounds are often accompanied by a poor wound-healing environment such as high glucose, recurrent infections, and inflammation, and standard wound treatments are fairly limited in their ability to heal these wounds. Metal-organic frameworks (MOFs) have been developed to improve therapeutic outcomes due to their ease of engineering, surface functionalization, and therapeutic properties. In this review, we summarize the different synthesis methods of MOFs and conduct a comprehensive review of the latest research progress of MOFs in the treatment of diabetes and its wounds.
View Article and Find Full Text PDFIn recent years, chemodynamic therapy (CDT) has received extensive attention as a novel means of cancer treatment. The CDT agents can exert Fenton and Fenton-like reactions in the acidic tumor microenvironment (TME), converting hydrogen peroxide (HO) into highly toxic hydroxyl radicals (·OH). However, the pH of TME, as an essential factor in the Fenton reaction, does not catalyze the reaction effectively, hindering its efficiency, which poses a significant challenge for the future clinical application of CDT.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are regulators of gene expression that can regulate cell proliferation and programmed cell death and serve as biomarkers in renal diseases. However, the specific traits and underlying mechanisms of circRNAs in the progression of lupus nephritis (LN) have not been elucidated. In the present study, we clarified that hsa_circ_0054595 (circRTN4) was upregulated in human renal mesangial cells (HRMCs).
View Article and Find Full Text PDFTripartite motif-containing 27 (TRIM27) belongs to the triple motif (TRIM) protein family, which plays a role in a variety of biological activities. Our previous study showed that the TRIM27 protein was highly expressed in the glomerular endothelial cells of patients suffering from lupus nephritis (LN). However, whether TRIM27 is involved in the injury of glomerular endothelial cells in lupus nephritis remains to be clarified.
View Article and Find Full Text PDFIntroduction: Although various lipid and non-lipid analytes measured by nuclear magnetic resonance (NMR) spectroscopy have been associated with type 2 diabetes, a structured comparison of the ability of NMR-derived biomarkers and standard lipids to predict individual diabetes risk has not been undertaken in larger studies nor among individuals at high risk of diabetes.
Research Design And Methods: Cumulative discriminative utilities of various groups of biomarkers including NMR lipoproteins, related non-lipid biomarkers, standard lipids, and demographic and glycemic traits were compared for short-term (3.2 years) and long-term (15 years) diabetes development in the Diabetes Prevention Program, a multiethnic, placebo-controlled, randomized controlled trial of individuals with pre-diabetes in the USA (N=2590).
Background: Combined chemotherapy is often affected by the different physicochemical properties of chemotherapeutic drugs, which should be improved by the reasonable design of co-loaded preparations.
Purpose: A kind of simple but practical graphene oxide (GO) wrapped mesoporous silica nanoparticles (MSN) modified with hyaluronic acid (MSN@GO-HA) were developed for the co-delivery of cinnamaldehyde (CA) and doxorubicin (DOX), in order to enhance their combined treatment on tumor cells and reduce their application defects.
Methods: The MSN@GO-HA was constructed by MSN (loading CA via physical diffusion) and GO-HA (modified with HA and loading DOX via π-π stacking) through the electrostatic adsorption, followed by the physicochemical characterization, serum stability and in vitro release study.
Background: Per- and polyfluoroalkyl substances (PFAS) are widely used chemicals, some of which have been linked to type 2 diabetes. We tested whether PFAS concentrations were cross-sectionally associated with metabolites previously shown to predict incident type 2 diabetes using the Diabetes Prevention Program (DPP), a trial of individuals at high risk of type 2 diabetes.
Methods: We evaluated 691 participants enrolled in the DPP with baseline measures of 10 PFAS (including total perfluorooctanesulfonic acid (PFOS), total perfluorooctanoic acid (PFOA), and Sb-PFOA [branched isomers of PFOA]) and 77 metabolites.
Two new compounds, triacremoniate (1) and dietziamide C (2) along with known compounds β-Adenosine (3) and acrepyrone A (4) were obtained from the mangrove-derived fungus Acremonium citrinum. MMF4. Their structures were unambiguously determined by extensive spectroscopic methods, including UV, IR, HRESIMS and NMR.
View Article and Find Full Text PDFIn this work, we study the behavior of a composite rod consisting of a piezoelectric semiconductor layer and two piezomagnetic layers under an applied axial magnetic field. Based on the phenomenological theories of piezoelectric semiconductors and piezomagnetics, a one-dimensional model is developed from which an analytical solution is obtained. The explicit expressions of the coupled fields and the numerical results show that an axially applied magnetic field produces extensional deformation through piezomagnetic coupling, the extension then produces polarization through piezoelectric coupling, and the polarization then causes the redistribution of mobile charges.
View Article and Find Full Text PDFPropagation characteristics of Lamb waves in a bilayer plate comprised of a PMN-PT single crystal layer and an elastic layer were investigated in this study. The profiles of the bilayer plate's upper and lower surfaces and the common interface between the PMN-PT and elastic layers were assumed to be periodic corrugation instead of perfect planes. The PMN-PT single crystal was poled along the [0 1 1] direction with macroscopic symmetry of orthonormal mm2.
View Article and Find Full Text PDF