Publications by authors named "Jinwoong Cha"

Hybridizing a microwave mode with a quantum state requires precise frequency matching of a superconducting microwave resonator and the corresponding quantum object. However, fabrication always brings imperfections in geometry and material properties, causing deviations from the desired operating frequencies. An effective and universal strategy for their resonant coupling is to tune the frequency of a resonator, as quantum states like phonons are hardly tunable.

View Article and Find Full Text PDF

Nanomechanical resonances coupled to microwave cavities can be excited, measured, and controlled simultaneously using electromechanical back-action phenomena. Examples of these effects include sideband cooling and amplification, which are commonly described through linear equations of motion governed by an effective optomechanical Hamiltonian. However, this linear approximation is invalid when the pump-induced cavity microwave field is large enough to trigger optomechanical nonlinearities, resulting in phenomena like frequency combs.

View Article and Find Full Text PDF

Nanoscale electromechanical coupling provides a unique route toward control of mechanical motions and microwave fields in superconducting cavity electromechanical devices. However, conventional devices composed of aluminum have presented severe constraints on their operating conditions due to the low superconducting critical temperature (1.2 K) and magnetic field (0.

View Article and Find Full Text PDF

Guiding waves through a stable physical channel is essential for reliable information transport. However, energy transport in high-frequency mechanical systems, such as in signal-processing applications, is particularly sensitive to defects and sharp turns because of back-scattering and losses. Topological phenomena in condensed matter systems have shown immunity to defects and unidirectional energy propagation.

View Article and Find Full Text PDF

Nanoelectromechanical systems (NEMS) that operate in the megahertz (MHz) regime allow energy transducibility between different physical domains. For example, they convert optical or electrical signals into mechanical motions and vice versa. This coupling of different physical quantities leads to frequency-tunable NEMS resonators via electromechanical non-linearities.

View Article and Find Full Text PDF

Dense colloidal suspensions can propagate and absorb large mechanical stresses, including impacts and shocks. The wave transport stems from the delicate interplay between the spatial arrangement of the structural units and solvent-mediated effects. For dynamic microscopic systems, elastic deformations of the colloids are usually disregarded due to the damping imposed by the surrounding fluid.

View Article and Find Full Text PDF

In this work, methods for the efficient simulation of large systems embedded in a molecular environment are presented. These methods combine linear-scaling (LS) Kohn-Sham (KS) density functional theory (DFT) with subsystem (SS) DFT. LS DFT is efficient for large subsystems, while SS DFT is linear scaling with a smaller prefactor for large sets of small molecules.

View Article and Find Full Text PDF