Alzheimer's disease (AD) is an extremely devastating neurodegenerative disease, and there is no cure for it. AD is specified as the misfolding and aggregation of amyloid-β protein (Aβ) and abnormalities in hyperphosphorylated tau protein. Current approaches to treat Alzheimer's disease have had some success in slowing down the disease's progression.
View Article and Find Full Text PDFAlzheimer's, Huntington's, and Parkinson's are devastating neurodegenerative diseases that are prevalent in the aging population. Patient care costs continue to rise each year, because there is currently no cure or disease modifying treatments for these diseases. Numerous efforts have been made to understand the molecular interactions governing the disease development.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein accumulation and loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Increased levels of alpha-synuclein have been shown to result in loss of mitochondrial electron transport chain complex I activity leading to increased reactive oxygen species (ROS) production. WT alpha-synuclein was stably overexpressed in human BE(2)-M17 neuroblastoma cells resulting in increased levels of an alpha-synuclein multimer, but no increase in alpha-synuclein monomer levels.
View Article and Find Full Text PDFHeat shock protein 70 (Hsp70) is a chaperone that normally scans the proteome and initiates the turnover of some proteins (termed clients) by linking them to the degradation pathways. This activity is critical to normal protein homeostasis, yet it appears to fail in diseases associated with abnormal protein accumulation. It is not clear why Hsp70 promotes client degradation under some conditions, while sparing that protein under others.
View Article and Find Full Text PDFAim: Amyotrophic lateral sclerosis (ALS) is a debilitating fatal neurodegenerative disorder. 90-95% of ALS cases are sporadic with no clear risk factors associated with the disease. Identification of biomarkers associated with ALS may lead to early detection and make it more amenable to therapeutic intervention.
View Article and Find Full Text PDFMass spectrometry data collected in a study analyzing the effect of withaferin A (WA) on a mouse microglial (N9) cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis.
View Article and Find Full Text PDFEthnopharmacological Relevance: Withaferin A (WA) is a major bioactive compound isolated from the medicinal plant Withania somnifera Dunal, also known as "Ashwagandha". A number of published reports suggest various uses for WA including its function as an anti-inflammatory and anti-angiogenic drug molecule. The effects of WA at the molecular level in a cellular environment are not well understood.
View Article and Find Full Text PDFLeucine-Rich Repeat Kinase 2 (LRRK2) is a large, multi-domain protein that has been found to be mutated in patients with familial and sporadic Parkinson's disease, Alzheimer's disease and Crohn's disease. While the functions of LRRK2 are still largely unclear and mutations in LRRK2 are associated with adverse gain-of-function activities such as increased kinase activity, increased levels of LRRK2 alone are associated with toxicity in neurons. Consequently, exploring mechanisms to decrease levels of LRRK2 using pharmacological inhibitors would be highly advantageous.
View Article and Find Full Text PDFTAR DNA binding protein (TDP43) is a DNA- and RNA-binding protein that is implicated in several neurodegenerative disorders termed as "TDP43 proteinopathies" including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and fronto-temporal lobe dementia (FTLD). We have developed an InCell Western (ICW) technique for screening TDP targeting drugs in 96 well plates. We tested 281 compounds and identified a novel compound hexachlorophene (referred to as B10) that showed potent reduction in TDP43 levels.
View Article and Find Full Text PDFThe constitutively expressed heat shock protein 70 kDa (Hsc70) is a major chaperone protein responsible for maintaining proteostasis, yet how its structure translates into functional decisions regarding client fate is still unclear. We previously showed that Hsc70 preserved aberrant Tau, but it remained unknown if selective inhibition of the activity of this Hsp70 isoform could facilitate Tau clearance. Using single point mutations in the nucleotide binding domain, we assessed the effect of several mutations on the functions of human Hsc70.
View Article and Find Full Text PDFWe previously discovered that one specific scalemic preparation of myricanol (1), a constituent of Myrica cerifera (bayberry/southern wax myrtle) root bark, could lower the levels of the microtubule-associated protein tau (MAPT). The significance is that tau accumulates in a number of neurodegenerative diseases, the most common being Alzheimer's disease (AD). Herein, a new synthetic route to prepare myricanol using a suitable boronic acid pinacol ester intermediate is reported.
View Article and Find Full Text PDFMethylene blue (MB) has been shown to slow down the progression of the Alzheimer's disease (AD) and other tauopathies; however distribution of MB into the brain is limited due its high hydrophilicity. In this study, we aimed to prepare novel hydrophobic glutathione coated PLGA nanoparticles to improve bioavailability of MB in the brain. Glutathione coated poly-(lactide-co-glycolide) (PLGA-b-PEG) nanoparticles (NPs) were prepared and tested in two different cell culture models of AD expressing microtubule associated protein tau (tau).
View Article and Find Full Text PDFImbalanced protein load within cells is a critical aspect for most diseases of aging. In particular, the accumulation of proteins into neurotoxic aggregates is a common thread for a host of neurodegenerative diseases. Recent work demonstrates that age-related changes to the cellular chaperone repertoire contributes to abnormal buildup of the microtubule-associated protein tau that accumulates in a group of diseases termed tauopathies, the most common being Alzheimer's disease (AD).
View Article and Find Full Text PDFIn Alzheimer's disease (AD), the mechanisms of neuronal loss remain largely unknown. Although tau pathology is closely correlated with neuronal loss, how its accumulation may lead to activation of neurotoxic pathways is unclear. Here we show that tau increased the levels of ubiquitinated proteins in the brain and triggered activation of the unfolded protein response (UPR).
View Article and Find Full Text PDFBackground: The microtubule-associated protein tau accumulates in neurodegenerative diseases known as tauopathies, the most common being Alzheimer's disease. One way to treat these disorders may be to reduce abnormal tau levels through chaperone manipulation, thus subverting synaptic plasticity defects caused by tau's toxic accretion.
Methods: Tauopathy models were used to study the impact of YM-01 on tau.
The molecular chaperone, heat shock protein 70 (Hsp70), is an emerging drug target for treating neurodegenerative tauopathies. We recently found that one promising Hsp70 inhibitor, MKT-077, reduces tau levels in cellular models. However, MKT-077 does not penetrate the blood-brain barrier (BBB), limiting its use as either a clinical candidate or probe for exploring Hsp70 as a drug target in the central nervous system (CNS).
View Article and Find Full Text PDFDysfunctional tau accumulation is a major contributing factor in tauopathies, and the heat-shock protein 70 (Hsp70) seems to play an important role in this accumulation. Several reports suggest that Hsp70 proteins can cause tau degradation to be accelerated or slowed, but how these opposing activities are controlled is unclear. Here we demonstrate that highly homologous variants in the Hsp70 family can have opposing effects on tau clearance kinetics.
View Article and Find Full Text PDFAs the fat body is a critical tissue for mosquito development, metamorphosis, immune and reproductive system function, the characterization of regulatory modules targeting gene expression to the female mosquito fat body at distinct life stages is much needed for multiple, varied strategies for controlling vector-borne diseases such as dengue and malaria. The hexameric storage protein, Hexamerin-1.2, of the mosquito Aedes atropalpus is female-specific and uniquely expressed in the fat body of fourth instar larvae and young adults.
View Article and Find Full Text PDFThe heat shock protein 70 (Hsp70) family of molecular chaperones has important functions in maintaining proteostasis under stress conditions. Several Hsp70 isoforms, especially Hsp72 (HSPA1A), are dramatically upregulated in response to stress; however, it is unclear whether these family members have biochemical properties that are specifically adapted to these scenarios. The redox-active compound, methylene blue (MB), has been shown to inhibit the ATPase activity of Hsp72 in vitro, and it promotes degradation of the Hsp72 substrate, tau, in cellular and animal models.
View Article and Find Full Text PDFTelomerase is an essential enzyme that counteracts the telomere attrition accompanying DNA replication during cell division. Regulation of the promoter activity of the gene encoding its catalytic subunit, the telomerase reverse transcriptase, is established as the dominant mechanism conferring the high telomerase activity in proliferating cells, such as embryonic stem and cancer cells. This study reveals a new mechanism of telomerase regulation through non-coding small RNA by showing that microRNA-498 (miR-498) induced by 1,25-dihydroxyvitamin D3 (1,25(OH)(2)D(3)) decreases the mRNA expression of the human telomerase reverse transcriptase.
View Article and Find Full Text PDF