Chromatin architecture and dynamics are regulated by various histone and non-histone proteins. The matrix attachment region binding proteins (MARBPs) play a central role in chromatin organization and function through numerous regulatory proteins. In the present study, we demonstrate that nuclear matrix protein SMAR1 orchestrates global gene regulation as determined by massively parallel ChIP-sequencing.
View Article and Find Full Text PDFThe heme-regulated inhibitor (HRI), a regulator of translation initiation, is known to be activated and upregulated, and it acts as either a cytoprotective player promoting cell survival or as an inducer of apoptosis during stress. However, the exact role of HRI in these two responses has not been elucidated. In the present investigation, using human cell lines, we attempted to unravel the molecular mechanism(s) of HRI-mediated differential response and the involved signaling pathways.
View Article and Find Full Text PDFInt J Biochem Cell Biol
November 2013
Erythropoiesis is controlled by a complex interplay of several signaling pathways and key transcription factors, as well as microRNAs (miRNAs). MicroRNAs function as critical modulators of gene expression for cellular processes. In the present study, we found that miR-320a inhibits erythroid differentiation by targeting Matrix Attachment Region binding protein SMAR1.
View Article and Find Full Text PDFAcetylation of p53 is indispensable for its transcriptional activities and induction of apoptosis upon DNA damage. Here, we show that chromatin remodelling protein SMAR1 inhibits p53 acetylation and p53 dependent apoptosis by repressing p300 expression in response to DNA damage. The repression of p300 expression by SMAR1 is relieved upon treatment with proteosomal inhibitors MG132 and Lactacystin.
View Article and Find Full Text PDF