Publications by authors named "Jintu Fan"

Effective sweat management fabric for sportswear facilitates sweat removal from the skin and elevates the comfort for human. However, when the body is in a strong hot and humid environment or after strenuous exercise, the sweat management fabric will be totally wetted and saturated quickly. As a result, excess sweat cannot be absorbed effectively by the garment, which creates obvious stickiness and heaviness.

View Article and Find Full Text PDF

Thermal protective textiles are crucial for safeguarding individuals, particularly firefighters and steelworkers, against extreme heat, and for preventing burn injuries. However, traditional firefighting gear suffers from statically fixed thermal insulation properties, potentially resulting in overheating and discomfort in moderate conditions, and insufficient protection in extreme fire events. Herein, an innovative soft robotic textile is developed for dynamically adaptive thermal management, providing superior personal protection and thermal comfort across a spectrum of environmental temperatures.

View Article and Find Full Text PDF

Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being. By merely broadening the set-point of indoor temperatures, we could significantly slash energy usage in building heating, ventilation, and air-conditioning systems. In recent years, there has been a surge in advancements in personal thermal management (PTM), aiming to regulate heat and moisture transfer within our immediate surroundings, clothing, and skin.

View Article and Find Full Text PDF

Acting as a "second skin", clothing plays an indispensable role in providing comfort and protection in the wide range of environments in which we live. However, comfort and protection are often competing requirements and are difficult to improve simultaneously. By mimicking the exceptional thermoresponsive one-way liquid transport property of human skin, here we developed a scalable and ecofriendly skin-like fabric that has a tunable directional water transport rate while having excellent water repellency.

View Article and Find Full Text PDF

Gas-evolving reactions are widespread in chemical and energy fields. However, the generated gas will accumulate at the interface, which reduces the rate of gas generation. Understanding the microscopic processes of the generation and accumulation of gas at the interface is crucial for improving the efficiency of gas generation.

View Article and Find Full Text PDF

Recent developed interfacial solar brine crystallizers, which employ solar-driven water evaporation for salts crystallization from the near-saturation brine to achieve zero liquid discharge (ZLD) brine treatment, are promising due to their excellent energy efficiency and sustainability. However, most existing interfacial solar crystallizers are only tested using NaCl solution and failed to maintain high evaporation capability when treating real seawater due to the scaling problem caused by the crystallization of high-valent cations. Herein, an artificial tree solar crystallizer (ATSC) with a multi-branched and interconnected open-cell cellular structure that significantly increased evaporation surface is rationally designed, achieving an ultra-high evaporation rate (2.

View Article and Find Full Text PDF

The energy consumption for maintaining desired indoor temperature accounts for 20% of primary energy use worldwide. Passive rooftop modulation of solar/thermal radiation without external energy input has a great potential in building energy saving. However, existing passive rooftop modulation techniques failed to simultaneously modulate solar/thermal radiation in response to rooftop surface temperature which is closely related to the building thermal loads, leading to limited or even counter-productive overall energy saving.

View Article and Find Full Text PDF

Electrospinning offers remarkable versatility in producing superfine fibrous materials and is hence widely used in many applications such as tissue scaffolds, filters, electrolyte fuel cells, biosensors, battery electrodes, and separators. Nevertheless, it is a challenge to print pre-designed 2D/3D nanofibrous structures using electrospinning due to its inherent jet instability. Here, we report on a novel far-field jet writing technique for precisely controlling the polymer jet in nanofiber deposition, which was achieved through a combination of reducing the nozzle voltage, adjusting the electric field, and applying a set of passively focusing electrostatic lenses.

View Article and Find Full Text PDF

The spontaneous directional movement of water droplets on a wedge-shaped groove has gained extensive attention due to the advantage of not requiring energy input and its potential wide applications. However, manipulating the direction of movement of water droplets on a wedge-shaped groove has been not fully achieved, and the fundamental understanding of its underlying mechanism remains unclear. Here, molecular dynamics simulations and theoretical analyses are combined to reveal the mechanism of movement in opposite directions of a water droplet at the same position on the wedge-shaped groove interface.

View Article and Find Full Text PDF

Polycaprolactone (PCL) scaffold is a common biological material for tissue engineering, owing to its good biocompatibility, biodegradability and plasticity. However, it is not suitable for osteoblast adhesion and regeneration of bone tissue due to its non-biological activity, poor mechanical strength, slow degradation speed, smooth surface and strong hydrophobicity. To improve the mechanical properties and biocompatibility of PCL scaffold, the PCL/nHA scaffolds were prepared by melting and blending different proportions of nano-hydroxyapatite (nHA) with PCL by the near-field direct-writing melt electrospinning technology in this study.

View Article and Find Full Text PDF

In this paper, near-field direct-writing melt electrospinning technology was employed to fabricate a polycaprolactone/nano-hydroxyapatite (PCL/nHA) scaffold for future applications in tissue engineering. The influences of different fabrication parameters on the structural characteristics, mechanical properties, and thermal stability of the scaffolds were discussed. It was found that the moving speed of the receiving plate had the most significant effect on the scaffold performance, followed by the receiving distance and spinning voltage.

View Article and Find Full Text PDF

By examining the requirements of tunnel workers, multifunctional tunnel protective clothing was proposed in this study. The traditional tunnel protective clothing was redesigned from the perspective of improving clothing structure and fabric. A safe and protective clothing system, incorporating a harmful gas detection module, position monitoring module and data transmission module, was developed.

View Article and Find Full Text PDF

A photothermal nanoconfinement reactor (PNCR) system is proposed and demonstrated by using hollow carbon nanospheres (HCNs) to enhance the performance of the chemical reaction. Under light irradiation, the local temperature of the HCN inner void space was much higher than the bulk solution temperature because the confined space concentrates heat and inhibits heat loss. Using the temperature-sensitive model reaction, peroxydisulfate (PDS) activation to oxidize micropollutant, it is shown that the degradation rate of sulfamethoxazole in the PNCR system is 7.

View Article and Find Full Text PDF

In recent years, the development of personal protective equipment (PPE) for health care workers (HCWs) attracted enormous attention, especially during the pandemic of COVID-19. The semi-permeable protective clothing and the prolonged working hours make the thermal comfort a critical issue for HCWs. Although there are many commercially available personal cooling products for PPE systems, they are either heavy in weight or have limited durability.

View Article and Find Full Text PDF

A mask that creates a physical barrier to protect the wearer from breathing in airborne bacteria or viruses, reducing the risk of infection in polluted air and potentially contaminated environments, has become a daily necessity for the public especially as COVID-19 has exploded around the world. However, the use of masks often causes soaring temperatures and thick humid air, leading to thermal and wear discomfort and breathing difficulties for a number of people, and further increasing the elevated risk of heat illnesses including heat stroke and heat exhaustion. When wearers become highly active or work under high tension, the excess sweat generated negatively affects the functionality of masks.

View Article and Find Full Text PDF

Heating and cooling efficiencies of a personal air thermoregulatory system are not only determined by the physics of energy conversion efficiency but also influenced by the interactions between human body and clothing microenvironment. It was found that for a wearable air ventilating system, sedentary position can lead to higher heating and cooling power than standing position. Also, leaning on the chair backrest during sitting can further improve the air cooling performance in hot condition compared with a non-leaning position.

View Article and Find Full Text PDF

Skin wetness and body water loss are important indexes to reflect the heat strain of the human body. According to ISO 7933 2004, the skin wetness and sweat rate are calculated by the evaporative heat flow and the maximum evaporative heat flow in the skin surface, etc. This work proposes the soft textile-based sensor, which was knitted by stainless steel/polyester blended yarn on the flat knitting machine.

View Article and Find Full Text PDF

Gas dissolution or accumulation regulating in an aqueous environment is important but difficult in various fields. Here, we performed all-atom molecular dynamics simulations to study the dissolution/accumulation of gas molecules in aqueous solutions. It was found that the distribution of gas molecules at the solid-water interface is regulated by the direction of the external electric field.

View Article and Find Full Text PDF

Heat generated in electronic devices is generally unevenly distributed across the casing. Contacting the hot areas may cause thermal discomfort and possibly skin burn. This study aims at better understanding the interrelationship between the thermal sensation, material properties and surface temperature for enhancing the user experience of electronic devices.

View Article and Find Full Text PDF

Correction for 'Nanoporous two-dimensional MoS2 membranes for fast saline solution purification' by Jianlong Kou et al., Phys. Chem.

View Article and Find Full Text PDF

This study identified acceptable range of physical attributes (form factors, weight, volume and contact area) of wearable computing devices (WCD) on different body areas in relation to human factors, through human performance tests with 41participants. Findings of this study discovered that there is a different level of threshold to discomfort on each part of the body; forearm has the smallest estimated mean of acceptable maximum weight of WCD followed by shirt pocket and collar area. On the other hand, front waist and back waist, when placed on one side, showed significantly higher estimated means of acceptable maximum weight of WCD than any other areas.

View Article and Find Full Text PDF

A novel breathable piezoelectric membrane has been developed by growing zinc oxide (ZnO) nanorods on the surface of electrospun poly(vinylidene fluoride) (PVDF) nanofibers using a low-temperature hydrothermal method. Significant improvement in the piezoelectric response of the PVDF membrane was achieved without compromising breathability and flexibility. PVDF is one of the most frequently used piezoelectric polymers due to its high durability and reasonable piezoelectric coefficient values.

View Article and Find Full Text PDF

Increasing skin wetness tends to increase fabric-skin adhesion and friction, resulting in wear discomfort or skin injuries. Here, the magnitude estimation approach was used to assess the stickiness sensation perceived in fabrics. Seven fabric types were wetted by putting onto wet 'skin' surface and dried for different durations to achieve different wetness levels, simulating wearing conditions during the recovery period after sweating.

View Article and Find Full Text PDF

Cell encapsulation has been shown to hold promise for effective, long-term treatment of type 1 diabetes (T1D). However, challenges remain for its clinical applications. For example, there is an unmet need for an encapsulation system that is capable of delivering sufficient cell mass while still allowing convenient retrieval or replacement.

View Article and Find Full Text PDF

The speed of capillary flow is a key bottleneck in improving the performance of nanofluidic and microfluidic devices for various applications including microfluidic diagnostics, thermal management heat pipes, micromolding devices, functional fabrics, and oil-water separators. Here, we present a novel nanofibrous or microfibrous hollow-wedged channel (named as W-Channel), which can significantly speed up the capillary flow. The capillary flow in the initial 100 s in the nanofibrous W-Channel was shown to be 8 times faster than that in the single-layer strip of the same material when placed vertically and over 20 times faster when placed horizontally.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session39bs1sn154cs4euodjva2jpdand9c8v9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once