Research on non-noble metal bifunctional electrocatalysts with high efficiency and long-lasting stability is crucial for many energy storage devices such as zinc-air batteries. In this report, nitrogen-doped porous hollow carbon spheres with a size of about 300 nm were fabricated using a modified Stöber method and decorated with an FeNi alloy through a pyrolytic reduction process, resulting in a promising bifunctional electrocatalyst for both the oxygen evolution reaction and oxygen reduction reaction. The as-prepared FeNi@NHCS electrocatalyst exhibits excellent bifunctional activity in KOH electrolyte, attributed to its mesoporous structure, large specific surface area, and the strong coupling between the FeNi nanoalloy and nitrogen-doped carbon carriers.
View Article and Find Full Text PDFThe long-term precise high-temperature measurement of thin-film thermocouples (TFTCs) has attracted attention due to the capability of instantaneous temperature detection. However, related technologies have seen slow development, and there is no one standard TFTC yet. Here, we focus on a new strategy of reducing alloys for the easy preparation and performance enhancement of TFTCs nanostructure and interface design.
View Article and Find Full Text PDF