Elementary tellurium is currently of great interest as an element with potential promise in nano-technology applications because of the recent discovery regarding its three two-dimensional phases and the existence of Weyl nodes around its Femi level. Here, we report on the unique nano-photonic properties of elemental tellurium particles [Te(0)], as harvest from a culture of a tellurium-oxyanion respiring bacteria. The bacterially-formed nano-crystals prove effective in the photonic applications tested compared to the chemically-formed nano-materials, suggesting a unique and environmentally friendly route of synthesis.
View Article and Find Full Text PDFIn the present study, a tough tetragonal zirconia polycrystalline (Y-TZP) material was developed for use in high-speed infrared windows and domes. The influence of the preparation procedure and the microstructure on the material's optical properties was evaluated by SEM and FT-IR spectroscopy. It was revealed that a high transmittance up to 77% in the three- to five-micrometer IR region could be obtained when the sample was pre-sintered at 1225 °C and subjected to hot isostatic pressing (HIP) at 1275 °C for two hours.
View Article and Find Full Text PDFEr(3+)-doped transparent glass ceramics containing micron-sized SrF2 crystals were obtained by direct liquid-phase sintering of a mixture of SrF2 powders and precursor glass powders at 820 °C for 15 min. The appearance and microstructural evolution of the SrF2 crystals in the resulting glass ceramics were investigated using X-ray diffraction, field-emission scanning electron microscopy and transmission microscopy. The SrF2 crystals are ~15 μm in size and are uniformly distributed throughout the fluorophosphate glass matrix.
View Article and Find Full Text PDFCorrection for 'Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers' by Xiaoyan Zhang et al., Nanoscale, 2016, DOI: 10.1039/c5nr05938k.
View Article and Find Full Text PDFHierarchical MoS2 thin films nanostructured with orthogonally oriented vertically and horizontally aligned layers were designed and excellent passive Q-switching behavior in a fiber laser was demonstrated. A special solvothermal system containing a small amount of water was applied to synthesize such hierarchical MoS2 nanofilms, in which the reaction rate is carefully controlled by the diffusion rate of the sulfur precursor. Wafer-scale MoS2 thin films with hierarchical structures are formed on various substrates.
View Article and Find Full Text PDFNonlinear optical property of transition metal dichalcogenide (TMDC) nanosheet dispersions, including MoS2, MoSe2, WS2, and WSe2, was performed by using Z-scan technique with ns pulsed laser at 1064 nm and 532 nm. The results demonstrate that the TMDC dispersions exhibit significant optical limiting response at 1064 nm due to nonlinear scattering, in contrast to the combined effect of both saturable absorption and nonlinear scattering at 532 nm. Selenium compounds show better optical limiting performance than that of the sulfides in the near infrared.
View Article and Find Full Text PDFThe synthesis of pure and well dispersed lutetium aluminum garnet (LuAG) powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC) was used as the precipitant.
View Article and Find Full Text PDFEmploying high-yield production of layered materials by liquid-phase exfoliation, molybdenum disulfide (MoS2) dispersions with large populations of single and few layers were prepared. Electron microscopy verified the high quality of the two-dimensional MoS2 nanostructures. Atomic force microscopy analysis revealed that ~39% of the MoS2 flakes had thicknesses of less than 5 nm.
View Article and Find Full Text PDFNear-infrared distributed feedback (DFB) laser actions of Oxazine 725 dye in zirconia thin films and in silica bulks were investigated. Intensity modulation and polarization modulation were used to generate the DFB lasing. Wideband tuning of the output wavelength was achieved by varying the period of the modulation generated by a nanosecond Nd:YAG laser at 532 nm.
View Article and Find Full Text PDFEr3+ doped CaF2-fluorophosphate (FP) glass microcomposites were produced by heat-treating the mixture of Er3+:CaF2 precipitate and FP glass powder above the melting temperature of the FP glass. The appearance of CaF2 crystallites in the resulting composites was confirmed by x ray diffraction. Despite the fact that the average diameter of the crystallites was around 10 μm as revealed by the micromorphology study, a transparent composite was obtained by matching the refractive index of FP glass to that of CaF2.
View Article and Find Full Text PDF