Intraventricular hemorrhage (IVH) commonly occurs as an extension of intracerebral hemorrhage (ICH) into the brain ventricular system, leading to worse outcomes without effective management. Using a mouse model of IVH, we found that impaired neurogenesis is evident in the subventricular zone (SVZ), along with persistent microglia activation, leukocyte infiltration and cell death. Pharmacological depletion of microglia using PLX3397, an inhibitor of colony stimulating factor 1 receptor (CSF1R), promotes neurogenesis, and alleviated delayed functional impairments in IVH mice.
View Article and Find Full Text PDFIntroduction: Intracerebral hemorrhage (ICH) accounts for 10%-15% of all strokes and culminates in high mortality and disability. After ICH, brain injury is initiated by the mass effect of hematoma, followed by secondary cytotoxic injury from dying brain cells, hematoma disintegration, and cascading brain immune response. However, the molecular mechanism of secondary cytotoxic brain injury in ICH is not completely understood.
View Article and Find Full Text PDFBackground: Interleukin-6 receptor blockade is effective in reducing the risk of relapses in neuromyelitis optica spectrum disorder (NMOSD). However, its efficacy during acute attacks of NMOSD remains elusive.
Objective: We investigated the effects of tocilizumab on disability during acute attacks, as well as its maintenance, in patients with moderate-to-severe myelitis.
Type 2 diabetes mellitus (T2DM) is a major comorbidity exacerbating ischemic brain injury and impairing post-stroke recovery. Our previous study suggested that recombinant human fibroblast growth factor (rFGF) 21 might be a potent therapeutic targeting multiple aspects of pathophysiology in T2DM stroke. This study aims to evaluate the potential effects of rFGF21 on cerebrovascular remodeling after T2DM stroke.
View Article and Find Full Text PDFBackground: Traumatic brain injury (TBI) is a significant cause of death and disability worldwide. The TLR4-NFκB signaling cascade is the critical pro-inflammatory activation pathway of leukocytes after TBI, and modulating this signaling cascade may be an effective therapeutic target for treating TBI. Previous studies indicate that recombinant annexin A2 (rA2) might be an interactive molecule modulating the TLR4-NFκB signaling; however, the role of rA2 in regulating this signaling pathway in leukocytes after TBI and its subsequent effects have not been investigated.
View Article and Find Full Text PDFSci Transl Med
August 2021
Acute brain insults elicit pronounced inflammation that amplifies brain damage in intracerebral hemorrhage (ICH). We profiled perihematomal tissue from patients with ICH, generating a molecular landscape of the injured brain, and identified formyl peptide receptor 1 (FPR1) as the most abundantly increased damage-associated molecular pattern (DAMP) receptor, predominantly expressed by microglia. Circulating mitochondrial -formyl peptides, endogenous ligands of FPR1, were augmented and correlated with the magnitude of brain edema in patients with ICH.
View Article and Find Full Text PDFCerebral metabolic dysfunction has been shown to extensively mediate the pathophysiology of brain injury after subarachnoid hemorrhage (SAH). The characterization of the alterations of metabolites in the brain can help elucidate pathophysiological changes occurring throughout SAH and the relationship between secondary brain injury and cerebral energy dysfunction after SAH. Cerebral microdialysis (CMD) is a tool that can measure concentrations of multiple bioenergetics metabolites in brain interstitial fluid.
View Article and Find Full Text PDFIntravenous administration of tissue-type plasminogen activator (IV tPA) therapy has long been considered a mainstay in ischemic stroke management. However, patients respond to IV tPA therapy unequally with some subsets of patients having worsened outcomes after treatment. In particular, diabetes mellitus (DM) is recognized as a clinically important vascular comorbidity that leads to lower recanalization rates and increased risks of hemorrhagic transformation (HT).
View Article and Find Full Text PDFAstrocyte loss induced by neuromyelitis optica (NMO)-IgG and complement-dependent cytotoxicity (CDC) is the hallmark of NMO pathology. The survival of astrocytes is thought to reflect astrocyte exposure to environmental factors in the CNS and the response of astrocytes to these factors. However, still unclear are how astrocytes respond to NMO-IgG and CDC, and what CNS environmental factors may impact the survival of astrocytes.
View Article and Find Full Text PDF