Publications by authors named "Jinrong Zou"

The genetic alphabet of life has been dramatically expanded via the development of unnatural base pairs (UBPs) that work as efficiently as natural base pairs in the storage and retrieval of genetic information. Among the most predominant UBPs, dNaM-dTPT3 and its analogues have been successfully employed to build semisynthetic cells with a functional six-letter genome. With the rapidly growing applications of UBPs and , there is an ever-increasing demand for DNA oligonucleotides containing unnatural bases (UBs) at desired positions.

View Article and Find Full Text PDF

Unnatural base pairs (UBPs) have been developed to expand the genetic alphabet and . UBP dNaM-dTPT3 and its analogues have been successfully used to construct the first set of semi-synthetic organisms, which suggested the great potential of UBPs to be used for producing novel synthetic biological parts. Two prerequisites for doing so are the facile manipulation of DNA containing UBPs with common tool enzymes, including DNA polymerases and ligases, and the easy availability of UBP-containing DNA strands.

View Article and Find Full Text PDF

Agrobacterium fabrum has been critical for the development of plant genetic engineering and agricultural biotechnology due to its ability to transform eukaryotic cells. However, the gene composition, evolutionary dynamics, and niche adaptation of this species is still unknown. Therefore, we established a comparative genomic analysis based on a pan-chromosome data set to evaluate the genetic diversity of .

View Article and Find Full Text PDF

Development of unnatural base pairs (UBPs) has significantly expanded the genetic alphabet both and and led to numerous potential applications in the biotechnology and biopharmaceutical industry. Efficient synthesis of oligonucleotides containing unnatural nucleobases is undoubtedly an essential prerequisite for making full use of the UBPs, and synthesis of oligonucleotides with terminal deoxynucleotidyl transferases (TdTs) has emerged as a method of great potential to overcome limitations of traditional solid-phase synthesis. Herein, we report the efficient template-independent incorporation of nucleotides of unnatural nucleobases dTPT3 and dNaM, which have been designed to make one of the most successful UBPs to date, dTPT3-dNaM, into DNA oligonucleotides with a TdT enzyme under optimized conditions.

View Article and Find Full Text PDF