Publications by authors named "Jinqiu Zhang"

Although the iron-nitrogen-carbon (Fe-N-C) catalyst has great potential in zinc-air batteries (ZABs), the insufficient performance and low production of the Fe-N-C catalyst are still the key factors that greatly limit the commercial application. In this study, first, a simple dual melt-salt template method is developed to prepare the hierarchically porous HPFe-N-C catalyst with abundant highly stable Fe-pyridinic-N sites. Then, HPFe-N-C and Fe-phenanthroline are mixed and heated for the mass production of THPFe-N-C with rich highly active Fe-pyrrolic-N sites.

View Article and Find Full Text PDF

Background: Cervical cancer is a leading cause of death in developing countries. Although the placenta is a tumor-like organ, the placental development, including invasive function, is well controlled. One mechanism is that extracellular vesicles (EVs) released from the placenta contribute to this regulation.

View Article and Find Full Text PDF
Article Synopsis
  • Sepsis is a serious condition with high rates of incidence and death, and it's linked to changes in gut microbiota, sparking interest in research on this interaction.
  • The review discusses the challenges in proving a direct causal relationship between sepsis and gut microbiota imbalances due to the complexity of critical illness and various treatments.
  • It proposes new targeted therapies based on microbiome research and highlights the need for better bacterial selection and timing in treatment, while emphasizing ongoing studies that may lead to effective probiotics for restoring gut health in sepsis patients.
View Article and Find Full Text PDF

During the oxygen evolution reaction (OER), catalyst candidates that can fully trigger self-reconstruction to derive active species with favorable configurations are expected to overcome the sluggish reaction kinetics. Herein, we innovatively propose the introduction of heterogeneous vanadate dopants into nickel-iron alloy precatalysts, where the crystal mismatch structure induces local electron delocalization in the hexagonal close packed alloy phase, thereby facilitating adequate electrochemical reconstruction to form (oxy)hydroxides as the real catalytic species. Simultaneously, the participation of vanadate in the reconstruction also triggers mismatch in the derived (oxy)hydroxides, reinforcing the metal-oxygen covalence, so that lattice oxygen activation is kinetically favorable and facilitates the OER via the lattice oxygen pathway.

View Article and Find Full Text PDF

Background: Staphylococcus aureus is a widely distributed and highly pathogenic zoonotic bacterium. Sortase A represents a crucial target for the research and development of novel antibacterial drugs.

Objective: This study aims to establish quantitative structure-activity relationship models based on the chemical structures of a class of benzofuranene cyanide derivatives.

View Article and Find Full Text PDF

Candida albicans stably colonizes humans but is the leading cause of hospital-acquired fungemia. Traditionally, masking immunogenic moieties has been viewed as a tactic for immune evasion. Here, we demonstrate that C.

View Article and Find Full Text PDF

The limitations of two-dimensional (2D) graphene in broadband photodetector are overcome by integrating nitrogen (N) doping into three-dimensional (3D) structures within silicon (Si) via plasma-assisted chemical vapor deposition (PACVD) technology. This contributes to the construction of vertical Schottky heterojunction broad-spectrum photodetectors and applications in logic devices and image sensors. The natural nanoscale resonant cavity structure of 3D-graphene enhances photon capture efficiency, thereby increasing photocarrier generation.

View Article and Find Full Text PDF

Human multidrug resistance protein 5 (hMRP5) effluxes anticancer and antivirus drugs, driving multidrug resistance. To uncover the mechanism of hMRP5, we determine six distinct cryo-EM structures, revealing an autoinhibitory N-terminal peptide that must dissociate to permit subsequent substrate recruitment. Guided by these molecular insights, we design an inhibitory peptide that could block substrate entry into the transport pathway.

View Article and Find Full Text PDF

The swift advancement of the solid oxide fuel cell (SOFC) sector necessitates a harmony between electrode performance and commercialization cost. The economic value of elements is frequently linked to their abundance in the Earth's crust. Here, we develop abundant rare-earth iron perovskite electrodes of LnSrFeO (Ln = La, Pr, and Nd) with high abundant rare-earth metals and preferred iron metal for SOFCs.

View Article and Find Full Text PDF

Staphylococcus aureus persists within mammary epithelial cells for an extended duration, exploiting the host metabolic resources to facilitate replication. This study revealed a mechanism by which intracellular S aureus reprograms host metabolism, with PFKFB3 playing a crucial role in this process. Mechanistically, S aureus induced mitochondrial damage, leading to increased levels of mitochondrial reactive oxygen species and dysfunction in the electron transport chain.

View Article and Find Full Text PDF

With the atypical rise of infection (MPI) in 2023, prompt studies are needed to determine the current epidemic features and risk factors with emerging trends of MPI to furnish a framework for subsequent investigations. This multicentre, retrospective study was designed to analyse the epidemic patterns of MPI before and after the COVID-19 pandemic, as well as genotypes and the macrolide-resistance-associated mutations in sampled from paediatric patients in Southern China. Clinical data was collected from 1,33,674 patients admitted into investigational hospitals from 1 June 2017 to 30 November 2023.

View Article and Find Full Text PDF

Background: Hypothyroidism, a prevalent endocrine disorder, carries significant implications for maternal and infant health, especially in the context of maternal hypothyroidism. Despite a gradual surge in recent research, achieving a comprehensive understanding of the current state, focal points, and developmental trends in this field remains challenging. Clarifying these aspects and advancing research could notably enhance maternal-infant health outcomes.

View Article and Find Full Text PDF

Glycans are complex biomolecules that encode rich information and regulate various biological processes, such as fertilization, host-pathogen binding, and immune recognition, through interactions with glycan-binding proteins. A key driving force for glycan-protein recognition is the interaction between the π electron density of aromatic amino acid side chains and polarized C─H groups of the pyranose (termed the CH-π interaction). However, the relatively weak binding affinity between glycans and proteins has hindered the application of glycan detection and imaging.

View Article and Find Full Text PDF

Mapping genetic variations to phenotypic variations poses a significant challenge, as mutations often combine unexpectedly, diverging from assumed additive effects even in the same environment. These interactions are known as epistasis or genetic interactions. Sign epistasis, as a specific type of epistasis, involves a complete reversal of mutation effects within altered genetic backgrounds, presenting a substantial hurdle to phenotype prediction.

View Article and Find Full Text PDF

Background: Nephronophthisis (NPHP) is a genetically heterogeneous disease that can lead to end-stage renal disease (ESRD) in children. The TTC21B variant is associated with NPHP12 and mainly characterized by cystic kidney disease, skeletal malformation, liver fibrosis, and retinopathy. Affected patients range from children to adults.

View Article and Find Full Text PDF

Copper-based tandem catalysts are effective candidates for yielding multi-carbon (C2+) products in electrochemical reduction of carbon dioxide (CORR). However, these catalysts still face a significant challenge regarding in the low selectivity for the production of a specific product. In this study, we report a high selectivity of 77.

View Article and Find Full Text PDF

Pseudorabies virus (PRV) is a highly contagious viral disease, which leads to severe financial losses in the breeding industry worldwide. Presently, PRV is mainly controlled using live attenuated and inactivated vaccines. However, these vaccines have an innate tendency to lose their structural conformation upon exposure to environmental and chemical stressors and cannot provide full protection against the emerging prevalent PRV variants.

View Article and Find Full Text PDF

Background: With the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in schools and communities, clinical evidence is needed to determine the impact of the pandemic and public health interventions under the zero coronavirus disease policy on the occurrence of common infectious diseases and non-infectious diseases among children.

Methods: The current study was designed to analyse the occurrence of common infectious diseases before and after the pandemic outbreak in southern China. Data was obtained for 1 801 728 patients admitted into children's hospitals in Guangzhou between January 2017 and July 2022.

View Article and Find Full Text PDF

Placentae collected from elective terminations during the first trimester are commonly used as control samples in research. However, it is widely acknowledged that many complications of pregnancies can occur or originate during the early stage of gestation. This raises the question that the placentae collected from the first trimester may not accurately reflect normal placental conditions.

View Article and Find Full Text PDF

Cystathionine-β-synthase (CBS) catalyzes the first step of the transsulfuration pathway. The role of host-derived CBS in Staphylococcus aureus (S. aureus)-induced udder infection remains elusive.

View Article and Find Full Text PDF

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development.

View Article and Find Full Text PDF

Mastitis is a common disease of dairy cows characterized by infiltration of leukocytes, especially neutrophils, resulting in increased permeability of the blood-milk barrier (BMB). Taurine, a functional nutrient, has been shown to have anti-inflammatory and antioxidant effects. Here, we investigated the regulatory effects and mechanisms of taurine on the complex immune network of the mammary gland in Streptococcus uberis (S.

View Article and Find Full Text PDF

A novel chlorinated functional group-modified triphenylmethane derivative leveler BB1 is used to achieve superconformal electrodeposition in microvias. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are performed to study the suppressing effect of BB1, while the convection-dependent adsorption of BB1 on the copper surface is analyzed by galvanostatic measurement, and a BB1 concentration window between 100 and 200 mg/L is beneficial for superfilling. The interactions among BB1, bis-(sodium sulfopropyl) disulfide (SPS), and poly(ethylene glycol) (PEG) are also investigated.

View Article and Find Full Text PDF

Fe single-atom catalysts still suffer from unsatisfactory intrinsic activity and durability for oxygen reduction reaction (ORR). Herein, the coexisting Fe single atoms and nanoparticles on hierarchically porous carbon (denoted as Fe-FeN-C) are prepared via a Zn(OH)(CO)-assisted pyrolysis strategy. Theoretical calculation reveals that the Fe nanoparticles can optimize the electronic structures and d-band center of Fe active center, hence reducing the reaction energy barrier for enhancing intrinsic activity.

View Article and Find Full Text PDF