Publications by authors named "Jinqian Pan"

Background: Pediatric asthma is a heterogeneous disease; however, current characterizations of its subtypes are limited. Machine learning (ML) methods are well-suited for identifying subtypes. In particular, deep neural networks can learn patient representations by leveraging longitudinal information captured in electronic health records (EHRs) while considering future outcomes.

View Article and Find Full Text PDF

Advancements in clinical treatment are increasingly constrained by the limitations of supervised learning techniques, which depend heavily on large volumes of annotated data. The annotation process is not only costly but also demands substantial time from clinical specialists. Addressing this issue, we introduce the S4MI (Self-Supervision and Semi-Supervision for Medical Imaging) pipeline, a novel approach that leverages advancements in self-supervised and semi-supervised learning.

View Article and Find Full Text PDF