Publications by authors named "Jinping Hua"

Cytoplasmic male sterile (CMS) lines play a crucial role in utilization of heterosis in crop plants. However, the mechanism underlying the manipulation of male sterility in cotton by long non-coding RNA (lncRNA) and brassinosteroids (BRs) remains elusive. Here, using an integrative approach combining lncRNA transcriptomic profiles with virus-induced gene silencing experiments, we identify a flower bud-specific lncRNA in the maintainer line 2074B, lncRNA67, negatively modulating with male sterility in upland cotton (Gossypium hirsutum).

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) play an important role in various biological processes in plants. However, there have been few reports on the evolutionary signatures of lncRNAs in closely related cotton species. The lncRNA transcription patterns in two tetraploid cotton species and their putative diploid ancestors were compared in this paper.

View Article and Find Full Text PDF

Fusarium wilt (FW) is widespread in global cotton production, but the mechanism underlying FW resistance in superior-fiber-quality Sea Island cotton is unclear. This study reveals that FW resistance has been the target of genetic improvement of Sea Island cotton in China since the 2010s. The key nonsynonymous single nucleotide polymorphism (SNP, T/C) of gene Gbar_D03G001670 encoding protein phosphatase 2C 80 (PP2C80) results in an amino acid shift (L/S), which is significantly associated with FW resistance of Sea Island cotton.

View Article and Find Full Text PDF

Salinity is frequently mentioned as a major constraint in worldwide agricultural production. Lint percentage (LP) is a crucial yield-component in cotton lint production. While the genetic factors affect cotton yield in saline soils are still unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Three specific carbon-chain extension genes involved in fatty acid synthesis play crucial roles in the oil accumulation of upland cotton seeds.
  • The study reveals differences in the expression levels of these genes in high seed oil content cultivars compared to a low oil content cultivar throughout various seed development stages.
  • Results indicate that these genes not only contribute to seed oil synthesis but also affect fiber elongation, highlighting their dual biological functions in cotton.
View Article and Find Full Text PDF

Aim: To measure the retinal vessels of primary open angle glaucoma (POAG) patients on spectral domain optical coherence tomography (SD-OCT) with a full-width at half-maximum (FWHM) algorithm to better explore their structural changes in the pathogenesis of POAG.

Methods: In this retrospective case-control study, the right eyes of 32 patients with POAG and 30 healthy individuals were routinely selected. Images of the supratemporal and infratemporal retinal vessels in the B zones were obtained by SD-OCT, and the edges of the vessels were identified by the FWHM method.

View Article and Find Full Text PDF

Background: The utilization of heterosis based on three-line system is an effective strategy in crop breeding. However, cloning and mechanism elucidation of restorer genes for cytoplasmic male sterility (CMS) in upland cotton have yet been realized.

Results: This research is based on CMS line 2074A with the cytoplasm from Gossypium harknessii (D) and restorer line R186.

View Article and Find Full Text PDF

Male sterility is classified as either cytoplasmic male sterility (CMS) or genic male sterility (GMS). Generally, CMS involves mitochondrial genomes interacting with the nuclear genome, while GMS is caused by nuclear genes alone. Male sterility is regulated by multilevel mechanisms in which non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and phased small interfering RNAs (phasiRNAs), which have been proven to be critical elements.

View Article and Find Full Text PDF

Heterosis refers to the superior performance of hybrids over their parents, which is a general phenomenon occurring in diverse organisms. Many commercial hybrids produce high yield without delayed flowering, which we refer to as optimal heterosis and is desired in hybrid breeding. Here, we attempted to illustrate the genomic basis of optimal heterosis by reinvestigating the single-locus quantitative trait loci and digenic interactions of two traits, the number of spikelets per panicle (SP) and heading date (HD), using recombinant inbred lines and 'immortalized F s' derived from the elite rice (Oryza sativa) hybrid Shanyou 63.

View Article and Find Full Text PDF

Salinity is a major abiotic stress at critical stages of seed germination and seedling establishment. Germination rate (GR) and field emergence rate (FER) are the key traits that determine the basic number of plants stand under field conditions. To explore molecular mechanisms in upland cotton under salt stress, a population of 177 recombinant inbred lines, and their parents were evaluated for seed germination traits (GP, germination potential; GR; FW, fresh weight; DW, dry weight; GL, germinal length) and seedling traits (FER; SH, seedling height; NL, number of main stem leaves) in 2016-2018.

View Article and Find Full Text PDF

Aquaporins (AQPs) facilitate the transport of water and small molecules across intrinsic membranes and play a critical role in abiotic stresses. In this study, 111, 54, and 56 candidate genes were identified in (AD), (A), and (D), respectively, and were further classified into five subfamilies, namely, plasma intrinsic protein (PIP), tonoplast intrinsic protein (TIP), nodulin 26-like intrinsic protein (NIP), small basic intrinsic protein (SIP), and uncategorized X intrinsic protein (XIP). Transcriptome analysis and quantitative real-time PCR (qRT-PCR) revealed some high-expression and (PIP and TIP genes in , respectively) in drought and salt stresses.

View Article and Find Full Text PDF

Sea Island cotton () is world-renowned for its superior natural fiber. Although fiber strength is one of the most important fiber quality traits, genes contributing to fiber strength are poorly understood. Production of sea island cotton also is inextricably linked to improving its relatively low yield, thus enhancing the importance of joint improvement of both fiber quality and yield.

View Article and Find Full Text PDF

Sea Island cotton (Gossypium barbadense) is the source of the world's finest fibre quality cotton, yet relatively little is understood about genetic variations among diverse germplasms, genes underlying important traits and the effects of pedigree selection. Here, we resequenced 336 G. barbadense accessions and identified 16 million SNPs.

View Article and Find Full Text PDF

Wild cotton species can contribute to a valuable gene pool for genetic improvement, such as genes related to salt tolerance. However, reproductive isolation of different species poses an obstacle to produce hybrids through conventional breeding. Protoplast fusion technology for somatic cell hybridization provides an opportunity for genetic manipulation and targeting of agronomic traits.

View Article and Find Full Text PDF

QTL for fiber quality traits under salt stress discerned candidate genes controlling fatty acid metabolism. Salinity stress seriously affects plant growth and limits agricultural productivity of crop plants. To dissect the genetic basis of response to salinity stress, a recombinant inbred line population was developed to compare fiber quality in upland cotton (Gossypium hirsutum L.

View Article and Find Full Text PDF

Background: Salt stress is one of the most damaging abiotic stresses in production of Upland cotton (Gossypium hirsutum). Upland cotton is defined as a medium salt-tolerant crop. Salinity hinders root development, shoots growth, and reduces the fiber quality.

View Article and Find Full Text PDF

Cotton (Gossypium hirsutum L.) is an important economic crop. Cytoplasm male sterility (CMS) has been used to develop hybrid system and to produce hybrid seeds in cotton, but the molecular mechanism of CMS remains unclear.

View Article and Find Full Text PDF

Genetic improvement in fiber quality is one of the main challenges for cotton breeders. Fiber quality traits are controlled by multiple genes and are classified as complex quantitative traits, with a negative relationship with yield potential, so the genetic gain is low in traditional genetic improvement by phenotypic selection. The availability of genomic sequences facilitates the development of high-throughput molecular markers, quantitative trait loci (QTL) fine mapping and gene identification, which helps us to validate candidate genes and to use marker assisted selection (MAS) on fiber quality in breeding programs.

View Article and Find Full Text PDF

Background: Intergenomic gene transfer (IGT) between nuclear and organellar genomes is a common phenomenon during plant evolution. Gossypium is a useful model to evaluate the genomic consequences of IGT for both diploid and polyploid species. Here, we explore IGT among nuclear, mitochondrial, and plastid genomes of four cotton species, including two allopolyploids and their model diploid progenitors (genome donors, G.

View Article and Find Full Text PDF

Cotton is widely cultivated globally because it provides natural fibre for the textile industry and human use. To identify quantitative trait loci (QTLs)/genes associated with fibre quality and yield, a recombinant inbred line (RIL) population was developed in upland cotton. A consensus map covering the whole genome was constructed with three types of markers (8295 markers, 5197.

View Article and Find Full Text PDF

Heterosis has been utilized in commercial production, but the heterosis mechanism has remained vague. Hybrid cotton is suitable to dissect the heterosis mechanism. In order to explore the genetic basis of heterosis in Upland cotton, we generated paternal and maternal backcross (BC/P and BC/M) populations.

View Article and Find Full Text PDF

Phosphoenolpyruvate carboxylase (PEPC) family genes play important roles in regulating plant growth and abiotic stress response. Based on the sequenced Gossypium genomes, we performed comprehensive analysis of PEPC homolog genes in cotton, which six, six, eleven and ten PEPC genes were identified in Gossypium arboreum (A), G. raimondii (D), G.

View Article and Find Full Text PDF

We identified 102, 51 and 51 proteins encoded by the trihelix genes in Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii, respectively. RNA sequence data and real-time quantitative polymerase chain reaction analysis showed that Gh_A05G2067 (GT-2) was highly upregulated under drought and salt stress conditions. Transient expression of GT-2-green fluorescent protein fusion protein in protoplast showed that GT-2 was localized in the nucleus.

View Article and Find Full Text PDF