Aerobic composting is a promising technology for converting manure into organic fertilizer with low capital investment and easy operation. However, the large nitrogen losses in conventional aerobic composting impede its development. Interconversion of nitrogen species was studied during membrane-covered aerobic composting (MCAC) and conventional aerobic composting, and solid-, liquid-, and gas-phase nitrogen migration pathways were identified by performing nitrogen balance measurements.
View Article and Find Full Text PDFPollutants in livestock manure have a compound effect during aerobic composting, but research to date has focused more on single factors. This study investigated the effects of adding amoxicillin (AMX), copper (Cu) and both (ACu) on nitrogen transformation and the microbial mechanisms in cow manure aerobic composting with wheat straw. In this study, compared with CK, AMX, Cu, and ACu increased NH cumulative emissions by 32.
View Article and Find Full Text PDFAerobic composting is a humification process accompanied by nitrogen loss. This study is the first research systematically investigating and elucidating the mechanism by which functional membrane-covered aerobic composting (FMCAC) reduces nitrogen loss and enhances humification. The variations in bioavailable organic nitrogen (BON) and humic substances (HSs) in different composting systems were quantitatively studied, and the functional succession patterns of fungal groups were determined by high-throughput sequencing and FUNGuild.
View Article and Find Full Text PDFCarbon and nitrogen evolution and bacteria and fungi succession in two functional membrane-covered aerobic composting (FMCAC) systems and a conventional aerobic composting system were investigated. The micro-positive pressure in each FMCAC system altered the composting microenvironment, significantly increased the oxygen uptake rates of microbes (p < 0.05), and increased the abundance of cellulose- and hemicellulose-degrading microorganisms.
View Article and Find Full Text PDFThis study investigated and assessed the effect of the functional-membrane covering technique (FMCT) on nitrogen succession during aerobic composting. By comparative experiments involving high-throughput sequencing and qPCR, nitrogen metabolism (including the ko00910 pathway and functional enzyme and gene abundances) was analyzed, and the nitrogen succession mechanism was identified. The FMCT created a micro-positive pressure, improved the aerobic conditions, and increased the oxygen utilization rate and temperature.
View Article and Find Full Text PDFThis study investigated the effect of biochar on antibiotics and antibiotic resistance genes (ARGs) during aerobic composting of pig manure. First, the composition and content of antibiotics in the manure were determined qualitatively and quantitatively. Biochar promoted the degradation of these antibiotics (oxytetracycline, chlortetracycline, and tetracycline).
View Article and Find Full Text PDFThis study evaluated the greenhouse gas emissions of solid dairy manure storage with the micro-aerobic group (MA; oxygen concentration <5%) and control group (CK; oxygen concentration <1%), and explained the difference in greenhouse gas emissions by exploring bacterial community succession. The results showed that the MA remained the micro-aerobic conditions, which the maximum and average oxygen concentrations were 4.1% and 1.
View Article and Find Full Text PDFThe effects of the functional membrane covering on the gas emissions and bacterial community during dairy cow manure aerobic composting were investigated. A lab-scale aerobic composting experiment was conducted with the control group (CK), Gore group (Gore), and ZT group (ZT), namely, without and with two functional membranes. Covering the functional membrane retained heat and improved the seed germination index in Gore and ZT groups.
View Article and Find Full Text PDFThe effects of functional membrane covering (FMC) on nitrogen transformation and related functional genes during aerobic composting were investigated by performing a comparable experiment. The FMC increased the pile temperature, promoted compost maturity, and decreased nitrogen loss. The FMC reduced NH and NO emissions by 7.
View Article and Find Full Text PDFTo investigate the emission mechanism of ammonia (NH) and nitrous oxide (NO) during aerobic composting and the influence of powder bamboo biochar (PBB) on this process, this paper conducted a systematic study on the nitrogen-transforming functional microbial community, including functional genes, microbial structure and metabolism pathways. PBB reduced NO and NH emissions by 1.25%-8.
View Article and Find Full Text PDF