Publications by authors named "Jinning Lou"

Aims: To explore the effect and mechanism of 1, 25-(OH)D on Schwann cell apoptosis induced by advanced glycation end products.

Main Methods: Schwann cells, isolated from rodent sciatic nerve were incubated with AGE-modified bovine serum albumin(AGE) to mimic diabetic conditions and 1,25-(OH)D was used as protector. Cell apoptosis was detected by PI/Annexin-V staining, caspase 3 activity assay and western blotting for caspase 3 and PARP.

View Article and Find Full Text PDF

Demyelination resulting from Schwann cell injury is a main pathological feature of diabetic neuropathy, and a key contributor to this process may be inflammation due to advanced glycation end products (AGEs). Therefore, protection by anti-inflammation agents is anticipated. In this study, we showed that interleukin-10 (IL-10), an anti-inflammatory cytokine, inhibits apoptosis of Schwann cells induced by AGEs .

View Article and Find Full Text PDF

Aims/introduction: Blockade or reversal the progression of diabetic nephropathy is a clinical challenge. The aim of the present study was to examine whether recombinant human glucagon-like peptide-1 (rhGLP-1) has an effect on alleviating urinary protein and urinary albumin levels in diabetic rats.

Materials And Methods: Streptozotocin-induced diabetes rats were treated with rhGLP-1 insulin and saline.

View Article and Find Full Text PDF

We investigated how human proislet peptide (HIP) regulates differentiation of human fetus-derived pancreatic progenitor cells (HFPPCs) and explored the potential link between HIP signaling and the menin pathway, which is key to regulating pancreatic islet differentiation. The data show that HIP promoted expression of proislet transcription factors (TFs), including PDX-1, MAFA, and NKX6.1, as well as other maturation markers of β-cells, such as insulin, GLUT2, KIR6.

View Article and Find Full Text PDF

Aberrant blood vessel formation and hemorrhage may contribute to tumor progression and are potential targets in the treatment of several types of cancer. Pancreatic neuroendocrine tumors (PNETs) are highly vascularized, particularly when they are well-differentiated. However, the process of vascularization and endothelial cell detachment in PNETs is poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the use of gingival mesenchymal stem cells (GMSCs) from human fetal tissue to repair gingival defects in rats.
  • Researchers identified and validated the GMSCs and assessed their safety by checking for tumor formation and immunogenic response.
  • Results showed that GMSCs effectively regenerated gingival tissue within three weeks, making them a promising and safe option for treating gingival defects.
View Article and Find Full Text PDF

GLP-1-based treatment improves glycemia through stimulation of insulin secretion and inhibition of glucagon secretion. Recently, more and more findings showed that GLP-1 could also protect kidney from diabetic nephropathy. Most of these studies focused on glomeruli, but the effect of GLP-1 on tubulointerstitial and tubule is not clear yet.

View Article and Find Full Text PDF

Background: Diabetic nephropathy (DN) is a severe complication of diabetes mellitus (DM). Pancreas or islet transplantation has been reported to prevent the development of DN lesions and ameliorate or reverse existing glomerular lesions in animal models. Shortage of pancreas donor is a severe problem.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs), which accumulate in the body during the development of diabetes, may be one of the factors leading to pancreatic β-cell failure and reduced β-cell mass. However, the mechanisms responsible for AGE‑induced apoptosis remain unclear. This study identified the role and mechanisms of action of tribbles homolog 3 (TRB3) in AGE-induced β-cell oxidative damage and apoptosis.

View Article and Find Full Text PDF

Our colleagues have reported previously that human pancreatic progenitor cells can readily differentiate into insulin-containing cells. Particularly, transplantation of these cell clusters upon in vitro induction for 3-4 w partially restores hyperglycemia in diabetic nude mice. In this study, we used human fetal pancreatic progenitor cells to identify the forkhead protein FoxO1 as the key regulator for cell differentiation.

View Article and Find Full Text PDF

Objective: Recent evidence has suggested that circulating endothelial progenitor cells (EPCs) can repair the arterial endothelium during vascular injury. However, a reliable source of human EPCs is needed for therapeutic applications. In this study, we isolated human fetal aorta (HFA)-derived EPCs and analyzed the capacity of EPCs to differentiate into endothelial cells.

View Article and Find Full Text PDF

Tumor endothelial cells have been found to be associated with metastasis and cancer progression. In this study, we reported that human esophageal cancer endothelial cells (HECEC), unlike corresponding human esophageal normal endothelial cells (HENEC) displayed several distinct feature couple with unique gene expression profile. Further studies showed that HECEC can enhance migration, invasion and self-renewal properties of esophageal carcinoma cell in vitro by a direct cell-cell interaction.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) are believed to be involved in diverse complications of diabetes mellitus. Overexposure to AGEs of pancreatic β-cells leads to decreased insulin secretion and cell apoptosis. Here, to understand the cytotoxicity of AGEs to pancreatic β-cells, we used INS-1-3 cells as a β-cell model to address this question, which was a subclone of INS-1 cells and exhibited high level of insulin expression and high sensitivity to glucose stimulation.

View Article and Find Full Text PDF

Leukocyte transendothelial migration and sequestration are two distinct outcomes following leukocyte adhesion to endothelium during ischemia-reperfusion injury, in which platelets may play a pivotal role. In the present study, we established an in vitro hypoxia-reoxygenation model to mimic ischemia-reperfusion injury and found platelet pre-incubation significantly increased leukocyte adhesion to endothelial cells after hyoxia-reoxygenation (over 67%). Blockade of endothelial-cell-expressed adhesion molecules inhibited leukocyte direct adhesion to endothelial cells, while platelet-mediated leukocyte adhesion was suppressed by blockade of platelet-expressed adhesion molecules.

View Article and Find Full Text PDF

Background: Endothelial cell damage is an important pathophysiological step of restenosis after angioplasty and stenting. Cell transplantation has great therapeutic potential for endothelial recovery. We investigated the effect of transplanting endothelial progenitor cells (EPCs) derived from human early fetal aortas in rat injured arteries.

View Article and Find Full Text PDF

Aims: Glucocorticoids, such as dexamethasone, are widely used anti-inflammatory drugs. Their use is frequently associated with the development of steroid- associated diabetes. Pancreatic β-cell dysfunction has been suggested to be one of the main causes of steroid-associated diabetes.

View Article and Find Full Text PDF

A significant portion of human and rat insulinomas coexpress multiple hormones. This character termed as multihormonality is also observed in some early pancreatic endocrine cells which coexpress insulin and glucagon, suggesting an incomplete differentiation status of both cells. Here we demonstrate that insulinoma cells INS-1 and INS-1-derived single cell clone INS-1-15 coexpressed insulin and glucagon in a portion of cells.

View Article and Find Full Text PDF

Type 1 diabetes mellitus (T1DM) is characterized by the deficiencies of insulin and C-peptide. Mounting evidences have proved the beneficial effects of C-peptide on the renal function in T1DM. However, it is still controversial about the roles of C-peptide in T2DM nephropathy since the level of C-peptide fluctuates greatly at different stages of T2DM.

View Article and Find Full Text PDF

Successful glioma gene therapy lays on two important factors, the therapeutic genes and efficient delivery vehicles to cross the blood-brain barrier (BBB) and reach gliomas. In this work, a new gene vector was constructed based on dendrigraft poly-l-lysines (DGL) and polyethyleneglycol (PEG), conjugated with a cell-penetrating peptide, the nucleolar translocation signal (NoLS) sequence of the LIM Kinase 2 (LIMK2) protein (LIMK2 NoLS peptide, LNP), yielding DGL-PEG-LNP. Plasmid DNA encoding inhibitor of growth 4 (ING4) was applied as the therapeutic gene.

View Article and Find Full Text PDF

The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines.

View Article and Find Full Text PDF

Most anticancer drugs are not able to cross the blood-brain barrier (BBB) effectively while surgery and radiation therapy cannot eradicate brain glioma cells and glioma stem cells (GSCs), hence resulting in poor prognosis with high recurrence rates. In the present study, a kind of multifunctional targeting daunorubicin plus quinacrine liposomes was developed for treating brain glioma and GSCs. Evaluations were performed on in-vitro BBB model, murine glioma cells, GSCs, and GSCs bearing mice.

View Article and Find Full Text PDF

Due to complication factors such as blood-brain barrier (BBB), integrating high efficiency of brain target ability with specific cargo releasing into one nanocarrier seems more important. A brain targeting nanoscale system is developed using dehydroascorbic acid (DHA) as targeting moiety. DHA has high affinity with GLUT1 on BBB.

View Article and Find Full Text PDF

Achieving effective gene therapy for glioma depends on gene delivery systems. The gene delivery system should be able to cross the blood-brain barrier (BBB) and further target glioma at its early stage. Active brain tumor targeted delivery can be achieved using the "Trojan horse" technology, which involves either endogenous ligands or extraneous substances that can recognize and bind to specific receptors in target sites.

View Article and Find Full Text PDF

Amphotericin B (AMB) has been a mainstay therapy for fungal infections of the central nervous system, but its use has been limited by its poor penetration into the brain, the mechanism of which remains unclear. In this study, we aimed to investigate the role of P-glycoprotein (P-gp) in AMB crossing the blood-brain barrier (BBB). The uptake of AMB by primary brain capillary endothelial cells in vitro was significantly enhanced after inhibition of P-gp by verapamil.

View Article and Find Full Text PDF

Chronic exposure to free fatty acids (FFAs) may induce β cell apoptosis in type 2 diabetes. However, the precise mechanism by which FFAs trigger β cell apoptosis is still unclear. Tribbles homolog 3 (TRB3) is a pseudokinase inhibiting Akt, a key mediator of insulin signaling, and contributes to insulin resistance in insulin target tissues.

View Article and Find Full Text PDF