ACS Appl Mater Interfaces
January 2025
Fast-charging lithium-ion batteries (LIBs) are the key to solving the range anxiety of electric vehicles. However, the lack of separators with high Li transportation rates has become a major bottleneck, restricting their development. In this work, the electrochemical performance of traditional polyethylene separators was enhanced by coating AlO nanoparticles with a novel green binder.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2024
Cotton fabrics with the main constituent of cellulose, which is hydrophilic, bacterial infected, and flammable, are in urgent need of functionalization as a kind of widely applied material. To address these issues, in this work, modified polyelectrolyte complex (MPEC) coatings with polyethylenimine (PEI), polyphosphate (APP), and perfluorodecyltrichlorosilane modified PEI (PFTS-PEI) are prepared to construct multi-functionally gradient MPEC coatings on cotton fabrics. Stability and synergistic effects on hydrophobicity, antibacterial activity, and flame retardancy in this system have been studied.
View Article and Find Full Text PDFDurable functionalization on polypropylene (PP) surfaces is always a key problem to besolved. Coatings with low surface energy peel off easily especially under extreme conditions, owing to their weak adhesion. In this paper, side groups of both polyhedral oligomeric silsesquioxane (POSS) and alkane are grafted to polypentafluorophenyl methacrylate (PFP), and then PP blends with these side-group modified PFP are obtained through a melt-blending process.
View Article and Find Full Text PDFAtmospheric drying method for fabricating aerogels is considered the most promising way for casting aerogels on a large scale. However, the organic solvent exchange, remaining environmental pollution risk, is a crucial step in mitigating the impact of surface tension during the atmospheric drying process, especially for wet gel formed through the alkoxy-derived sol-gel process, such as melamine-formaldehyde resin (MF) aerogel. Herein, a tough polymer-assisted in situ polymerization was proposed to fabricate MF resin aerogel with a combination of mechanical toughness and strength, enabling it to withstand the capillary force during water evaporation.
View Article and Find Full Text PDFPolymeric materials, rich in carbon, hydrogen, and oxygen elements, present substantial fire hazards to both human life and property due to their intrinsic flammability. Overcoming this challenge in the absence of any flame-retardant elements is a daunting task. Herein, we introduce an innovative strategy employing catalytic polymer auto-pyrolysis before combustion to proactively release CO, akin to possessing responsive CO fire extinguishing mechanisms.
View Article and Find Full Text PDFPhotothermal tumor therapy (PTT) and photoacoustic imaging (PA) have emerged as promising noninvasive diagnostic and therapeutic approaches for cancer treatment. However, the development of efficient PTT agents with high photostability and strong near-infrared (NIR) absorption remains challenging. This study synthesizes three isoindigo-based dual-acceptor conjugated polymers (CPs) (P-IIG-TPD, P-IIG-DPP, and P-IIG-EDOT-BT) via a green and nontoxic direct arylation polymerization (DArP) method and characterizes their optical, electrochemical, and NIR photothermal conversion properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2022
Nylon-cotton (NC) blend fabrics are widely used in military and industrial applications, but their high flammability still remains a serious problem. In an effort to effectively and quickly impart flame retardancy to the NC fabric, it was treated by simply blade coating with a Cu-doped polyelectrolyte complex (CPEC) that consists of ammonium polyphosphate (APP), polyethylenimine (PEI), and copper sulfate. The viscosity of the CPEC can be adjusted by altering the content of CuSO, which controls the amount of extrinsic and intrinsic ion pairs.
View Article and Find Full Text PDFThe time delay existing between the chemical oscillation and mechanical oscillation (C-M delay) in a self-oscillating gel (SOG) system is observable in previous experimental studies. However, how the C-M delay affects the dynamic behavior of a large anisotropic SOG has not been quantified or reported systematically. In this study, we observed that the oscillation period increases with a decrease in the cross-linking density of the anisotropic SOG, and this determined whether regular mechanical oscillation occurs.
View Article and Find Full Text PDFChem Commun (Camb)
October 2018
A self-deformable gel system is constructed by coupling a gradient structured gel with a chemical oscillating reaction. The system exhibits periodic and asymmetric shape change. The asymmetric shape change of the gel is based on the gradient structure.
View Article and Find Full Text PDFMany of the unique properties of a conventionally crosslinked shape memory network are not found at the same time, and this is a large challenge for the development of advanced shape memory functional materials. In this work, a topologically well-controlled network shape memory poly(ethyl methacrylate) (CN-SMPEMA) is designed and fabricated by introducing two tetra-armed functional structures simultaneously as well-defined structure units to promote switch segment and net-point uniform distribution via the combined technology of the unique controllable atom transfer radical polymerization (ATRP) and copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC). Compared with conventionally crosslinked networks, the as-prepared CN-SMPEMA not only exhibits a combination of excellent mechanical properties, shape fixity, shape recovery ratios and outstanding cycling stability, but also displays rapid recoverability.
View Article and Find Full Text PDFIn this paper, rheological properties evolution of the simple mixed isotactic polypropylene/organoclay composites, impacted by intermediate- or large-amplitude oscillatory shear fields, was followed by dynamic melt rheometry. The physical meanings of such rheological evolution upon oscillatory shearing, which related closely to the dispersion and intercalation of organoclay in polymer, were discussed deeply. Especially, a structural recovery test was adopted to assess microstructure development induced by large-amplitude oscillatory shear and to better understand the intercalation mechanism.
View Article and Find Full Text PDF