Publications by authors named "Jinmoo Lee"

Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (K) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli.

View Article and Find Full Text PDF

Significance: Stroke is the leading cause of chronic disability in the United States. How stroke size affects post-stroke repair and recovery is poorly understood.

Aim: We aim to investigate the effects of stroke size on early repair patterns and determine how early changes in neuronal circuits and networks predict functional outcomes after stroke.

View Article and Find Full Text PDF

Background: Ca release-activated Ca channel regulator 2A (CRACR2A) has been linked to immunodeficiency attributable to T-cell dysfunction in humans. We discovered that neutrophil CRACR2A promotes neutrophil adhesive and migratory functions by facilitating Ca mobilization and β2 integrin activation.

Methods: Myeloid-specific cracr2a conditional knockout mice and intravital microscopy were used to investigate the physiologic role of neutrophil cracr2a in neutrophil recruitment in vascular inflammation.

View Article and Find Full Text PDF

Background And Objectives: Large vessel vasculopathy (LVV), or moyamoya syndrome, increases the risk of stroke in patients with sickle cell disease (SCD), yet effective treatments are lacking. In atherosclerotic carotid disease, previous studies demonstrated elevated oxygen extraction fraction (OEF) as a predictor of ipsilateral stroke. In a SCD cohort, we examined hemispheric hemodynamic and oxygen metabolic dysfunction as tissue-based biomarkers of cerebral ischemic risk in patients with LVV.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS) represents a significant health burden globally, necessitating a better understanding of its genetic underpinnings to improve prevention and treatment strategies. Despite advances in IS genetics, studies focusing on the Spanish population and sex-stratified analyses are lacking.

Methods: A case-control genome-wide association study was conducted with 9081 individuals (3493 IS cases and 5588 healthy controls).

View Article and Find Full Text PDF

Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.

View Article and Find Full Text PDF
Article Synopsis
  • Wide-field calcium imaging (WFCI) allows researchers to observe neuronal activity in mice but requires manual categorization of sleep states, which is time-consuming and inconsistent.
  • A new method combining a convolutional neural network (CNN) and a bidirectional long short-term memory network (BiLSTM) has been developed to automate the classification of sleep states (wakefulness, NREM, REM) from WFCI data.
  • The automated system achieved an accuracy of 84% and a Cohen's κ of 0.64, indicating it can classify sleep states comparably to human scoring, suggesting its potential for enhancing sleep research.
View Article and Find Full Text PDF

Background: Hemorrhagic transformation (HT) and cerebral edema (CED) are both major complications following ischemic stroke, but few studies have evaluated their overlap. We evaluated the frequency and predictors of CED/HT overlap and whether their co-occurrence impacts functional outcome more than each in isolation.

Methods: 892 stroke patients enrolled in a prospective study had follow-up CT imaging evaluated for HT and CED; the latter was quantified using the ratio of hemispheric CSF volumes (with hemispheric CSF ratio < 0.

View Article and Find Full Text PDF

Although hemodynamic stress plays a key role in aneurysm formation outside of sickle cell disease (SCD), its role is understudied in patients with SCD. We hypothesized that tissue-based markers of hemodynamic stress are associated with aneurysm presence in a prospective SCD cohort. Children and adults with SCD, with and without aneurysms, underwent longitudinal brain magnetic resonance imaging/magnetic resonance angiography (MRA) to assess cerebral blood flow (CBF) and oxygen extraction fraction (OEF).

View Article and Find Full Text PDF
Article Synopsis
  • - This systematic review investigates white matter hyperintensity (WMH) research from 2000 to 2022, focusing on prevalence, mechanisms, and characteristics of studied cohorts while following PRISMA guidelines.
  • - The analysis revealed 1007 visual rating scales, 118 pipeline development articles, and 509 implementation articles, with a significant focus on aging, dementia, and psychiatric disorders, and indicated that deep learning is the leading segmentation technique developed.
  • - Despite advancements in quantitative techniques, traditional visual rating scales remain popular, with SPM being the most commonly used method; the review emphasizes the need for future standards in WMH segmentation and offers recommendations accordingly.
View Article and Find Full Text PDF

The disruption of the blood-brain barrier (BBB) in Alzheimer's Disease (AD) is largely influenced by amyloid beta (Aβ). In this study, we developed a high-throughput microfluidic BBB model devoid of a physical membrane, featuring endothelial cells interacting with an extracellular matrix (ECM). This paper focuses on the impact of varying concentrations of Aβ oligomers on BBB dysfunction by treating them in the luminal.

View Article and Find Full Text PDF

Background And Objectives: People with sickle cell disease (SCD) are at risk of cognitive dysfunction independent of stroke. Diminished functional connectivity in select large-scale networks and white matter integrity reflect the neurologic consequences of SCD. Because chronic transfusion therapy is neuroprotective in preventing stroke and strengthening executive function abilities in people with SCD, we hypothesized that red blood cell (RBC) transfusion facilitates the acute reversal of disruptions in functional connectivity while white matter integrity remains unaffected.

View Article and Find Full Text PDF

Substantial evidence suggests a role for immunotherapy in treating Alzheimer's disease (AD). While the precise pathophysiology of AD is incompletely understood, clinical trials of antibodies targeting aggregated forms of β amyloid (Aβ) have shown that reducing amyloid plaques can mitigate cognitive decline in patients with early-stage AD. Here, we describe what we believe to be a novel approach to target and degrade amyloid plaques by genetically engineering macrophages to express an Aβ-targeting chimeric antigen receptor (CAR-Ms).

View Article and Find Full Text PDF

Abnormal oxygen extraction fraction (OEF), a putative biomarker of cerebral metabolic stress, may indicate compromised oxygen delivery and ischemic vulnerability in patients with sickle cell disease (SCD). Elevated OEF was observed at the tissue level across the brain using an asymmetric spin echo (ASE) MR method, while variable global OEFs were found from the superior sagittal sinus (SSS) using a T2-relaxation-under-spin-tagging (TRUST) MRI method with different calibration models. In this study, we aimed to compare the average ASE-OEF in the SSS drainage territory and TRUST-OEF in the SSS from the same SCD patients and healthy controls.

View Article and Find Full Text PDF

Background: Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability.

View Article and Find Full Text PDF

Introduction: Ecological momentary assessment (EMA) is a methodological approach to studying intraindividual variation over time. This study aimed to use EMA to determine the variability of cognition in individuals with chronic stroke, identify the latent classes of cognitive variability, and examine any differences in daily activities, social functioning, and neuropsychological performance between these latent classes.

Methods: Participants ( = 202) with mild-to-moderate stroke and over 3-month post-stroke completed a study protocol, including smartphone-based EMA and two lab visits.

View Article and Find Full Text PDF

Accumulating evidence supports a link between sleep disorders, disturbed sleep, and adverse brain health, ranging from stroke to subclinical cerebrovascular disease to cognitive outcomes, including the development of Alzheimer disease and Alzheimer disease-related dementias. Sleep disorders such as sleep-disordered breathing (eg, obstructive sleep apnea), and other sleep disturbances, as well, some of which are also considered sleep disorders (eg, insomnia, sleep fragmentation, circadian rhythm disorders, and extreme sleep duration), have been associated with adverse brain health. Understanding the causal role of sleep disorders and disturbances in the development of adverse brain health is complicated by the common development of sleep disorders among individuals with neurodegenerative disease.

View Article and Find Full Text PDF

Neural activity in awake organisms shows widespread and spatiotemporally diverse correlations with behavioral and physiological measurements. We propose that this covariation reflects in part the dynamics of a unified, arousal-related process that regulates brain-wide physiology on the timescale of seconds. Taken together with theoretical foundations in dynamical systems, this interpretation leads us to a surprising prediction: that a single, scalar measurement of arousal (e.

View Article and Find Full Text PDF

White matter hyperintensities (WMH) are nearly ubiquitous in the aging brain, and their topography and overall burden are associated with cognitive decline. Given their numerosity, accurate methods to automatically segment WMH are needed. Recent developments, including the availability of challenge data sets and improved deep learning algorithms, have led to a new promising deep-learning based automated segmentation model called TrUE-Net, which has yet to undergo rigorous independent validation.

View Article and Find Full Text PDF

Objective: To examine the relationships between post-stroke depression and cognition using network analysis. In particular, we identified central depressive symptoms, central cognitive performances, and bridge components that connect these 2 constructs.

Design: An observational study.

View Article and Find Full Text PDF

This study aimed to examine whether the 3 harmonic components (HCs) of photoplethysmography (PTG) - total harmonic distortion (THD), harmonic power (HP), and normalized harmonic amplitude (HA) - have aging effects and may serve as an arterial stiffness marker and examine the relationship between HCs and clinical severity of pathological patterns. This study had a retrospective chart review design, and electronic medical records of 173 female patients (age: 38.57 ± 11.

View Article and Find Full Text PDF

Introduction: Vascular damage in Alzheimer's disease (AD) has shown conflicting findings particularly when analyzing longitudinal data. We introduce white matter hyperintensity (WMH) longitudinal morphometric analysis (WLMA) that quantifies WMH expansion as the distance from lesion voxels to a region of interest boundary.

Methods: WMH segmentation maps were derived from 270 longitudinal fluid-attenuated inversion recovery (FLAIR) ADNI images.

View Article and Find Full Text PDF

Background: Silent cerebral infarcts (SCI) in sickle cell anemia (SCA) are associated with future strokes and cognitive impairment, warranting early diagnosis and treatment. Detection of SCI, however, is limited by their small size, especially when neuroradiologists are unavailable. We hypothesized that deep learning may permit automated SCI detection in children and young adults with SCA as a tool to identify the presence and extent of SCI in clinical and research settings.

View Article and Find Full Text PDF

Background: Cerebral edema is a secondary complication of acute ischemic stroke, but its time course and imaging markers are not fully understood. Recently, net water uptake (NWU) has been proposed as a novel marker of edema.

Aims: Studying the RHAPSODY trial cohort, we sought to characterize the time course of edema and test the hypothesis that NWU provides distinct information when added to traditional markers of cerebral edema after stroke by examining its association with other markers.

View Article and Find Full Text PDF

Background: Cerebral edema has primarily been studied using midline shift or clinical deterioration as end points, which only captures the severe and delayed manifestations of a process affecting many patients with stroke. Quantitative imaging biomarkers that measure edema severity across the entire spectrum could improve its early detection, as well as identify relevant mediators of this important stroke complication.

Methods: We applied an automated image analysis pipeline to measure the displacement of cerebrospinal fluid (ΔCSF) and the ratio of lesional versus contralateral hemispheric cerebrospinal fluid (CSF) volume (CSF ratio) in a cohort of 935 patients with hemispheric stroke with follow-up computed tomography scans taken a median of 26 h (interquartile range 24-31) after stroke onset.

View Article and Find Full Text PDF