Background: Berardinelli-Seip congenital lipodystrophy (BSCL) is a heterogeneous autosomal recessive disorder characterized by an almost total lack of adipose tissue in the body. Mutations in the AGPAT2, BSCL2, CAV1 and PTRF genes define I-IV subtype of BSLC respectively and clinical data indicate that new causative genes remain to be discovered. Here, we retrieved 341 cases from 60 BSCL-related studies worldwide and aimed to explore genotype-phenotype correlations based on mutations of AGPAT2 and BSCL2 genes from 251 cases.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI), mainly caused by structural abnormalities of type I collagen, is a hereditary rare disease characterized by increased bone fragility and reduced bone mass. Clinical manifestations of OI mostly include multiple repeated bone fractures, thin skin, blue sclera, hearing loss, cardiovascular and pulmonary system abnormalities, triangular face, dentinogenesis imperfecta (DI), and walking with assistance. Currently, 20 causative genes with 18 subtypes have been identified for OI, of them, variations in and have been demonstrated to be major causative factors to OI.
View Article and Find Full Text PDFFront Pharmacol
September 2019
The rare autosomal dominant disorder acute intermittent porphyria (AIP) is caused by the deficient activity of hydroxymethylbilane synthase (HMBS). The symptoms of AIP are acute neurovisceral attacks which are induced by the dysfunction of heme biosynthesis. To better interpret the underlying mechanism of clinical phenotypes, we collected 117 gene mutations from reported individuals with AIP and evaluated the mutations' impacts on the corresponding protein structure and function.
View Article and Find Full Text PDFDNA sequencing has allowed for the discovery of the genetic cause for a considerable number of diseases, paving the way for new disease diagnostics. However, due to the lack of clinical samples and records, the molecular cause for rare diseases is always hard to identify, significantly limiting the number of rare Mendelian diseases diagnosed through sequencing technologies. Clinical phenotype information therefore becomes a major resource to diagnose rare diseases.
View Article and Find Full Text PDFBackground: Comparing and classifying functions of gene products are important in today's biomedical research. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most widely used indicators for protein interaction. Among the various approaches proposed, those based on the vector space model are relatively simple, but their effectiveness is far from satisfying.
View Article and Find Full Text PDFThere is a significant number of children around the world suffering from the consequence of the misdiagnosis and ineffective treatment for various diseases. To facilitate the precision medicine in pediatrics, a database namely the Pediatric Disease Annotations & Medicines (PedAM) has been built to standardize and classify pediatric diseases. The PedAM integrates both biomedical resources and clinical data from Electronic Medical Records to support the development of computational tools, by which enables robust data analysis and integration.
View Article and Find Full Text PDFNucleic Acids Res
January 2018
Rare diseases affect over a hundred million people worldwide, most of these patients are not accurately diagnosed and effectively treated. The limited knowledge of rare diseases forms the biggest obstacle for improving their treatment. Detailed clinical phenotyping is considered as a keystone of deciphering genes and realizing the precision medicine for rare diseases.
View Article and Find Full Text PDFSci China Life Sci
July 2017
Characterized by their low prevalence, rare diseases are often chronically debilitating or life threatening. Despite their low prevalence, the aggregate number of individuals suffering from a rare disease is estimated to be nearly 400 million worldwide. Over the past decades, efforts from researchers, clinicians, and pharmaceutical industries have been focused on both the diagnosis and therapy of rare diseases.
View Article and Find Full Text PDF