Publications by authors named "Jinling Kang"

Acetyl-TAG (3-acetyl-1,2-diacylglycerol), unique triacylglycerols (TAG) possessing an acetate group at the -3 position, exhibit valuable properties, such as reduced viscosity and freezing points. Previous attempts to engineer acetyl-TAG production in oilseed crops did not achieve the high levels found in naturally producing seeds. Here, we demonstrate the successful generation of camelina and pennycress transgenic lines accumulating nearly pure acetyl-TAG at 93 mol% and 98 mol%, respectively.

View Article and Find Full Text PDF

Background: Ventricular noncompaction (VNC) is a cardiomyopathy characterized by overdeveloped ventricular trabeculaes and deep recess, which has been rarely reported.

Case Presentation: A 29-year-old Chinese pregnant woman with no obvious fetal abnormality in regular prenatal examination during first and second trimester. However, at 32 weeks of gestation, both obstetric growth scan and fetal echocardiogram revealed an enlarged heart with grid-like changes at the apical region.

View Article and Find Full Text PDF

Objection: To explore the clinical features and prognosis of non-visualization of the fetal gallbladder (NVFGB).

Methods: Sixty-five cases diagnosed with NVFGB in the Peking University First Hospital were collected retrospectively from January 2019 to December 2020.

Results: Forty-nine cases were successfully followed up.

View Article and Find Full Text PDF

Genetic dissection of oil content and seed size in Camelina sativa was conducted by QTL mapping using a SNP-based linkage map and a recombinant inbred population. Camelina (Camelina sativa L. Crantz) is an oilseed crop that has great potential to provide sustainable feedstock for biofuel production and to improve dryland agriculture.

View Article and Find Full Text PDF

Background: Camelina ( L.) is a promising oilseed crop that may provide sustainable feedstock for biofuel production. One of the major drawbacks of Camelina is its smaller seeds compared to other major oil crops such as canola, which limit oil yield and may also pose challenges in successful seedling establishment, especially in dryland cultivation.

View Article and Find Full Text PDF

Camelina sativa is a re-emerging low-input oilseed crop that has great potentials. It is necessary to ameliorate camelina oils for optimized fatty acid composition that can meet different application requirements. Camelina seed contains significant amounts of C20-C24 very long-chain fatty acids (VLCFAs) that may not be desirable.

View Article and Find Full Text PDF

Co-expression of a lesquerella fatty acid elongase and the castor fatty acid hydroxylase in camelina results in higher hydroxy fatty acid containing seeds with normal oil content and viability. Producing hydroxy fatty acids (HFA) in oilseed crops has been a long-standing goal to replace castor oil as a renewable source for numerous industrial applications. A fatty acid hydroxylase, RcFAH, from Ricinus communis, was introduced into Camelina sativa, but yielded only 15 % of HFA in its seed oil, much lower than the 90 % found in castor bean.

View Article and Find Full Text PDF

Camelina sativa is a re-emerging low-input oilseed crop that may provide economical vegetable oils for industrial applications. It is desirable to increase the monounsaturated oleic acid (cis-9-octadecenoic acid, 18:1), and to decrease polyunsaturated fatty acids (PUFA), linoleic (cis, cis-9,12-octadecadienoic acid, 18:2) and α-linolenic (all-cis-9,12,15-octadecatrienoic acid, 18:3) acids, in camelina oils to improve oxidative stability. 18:1 desaturation is mainly controlled by the microsomal oleate desaturase (FAD2; EC 1.

View Article and Find Full Text PDF

Camelina sativa is an alternative oilseed crop that can be used as a potential low-cost biofuel crop or a source of health promoting omega-3 fatty acids. Currently, the fatty acid composition of camelina does not uniquely fit any particular uses, thus limit its commercial value and large-scale production. In order to improve oil quality and other agronomic characters, we have developed an efficient and simple in planta method to generate transgenic camelina plants.

View Article and Find Full Text PDF

Triacylglycerol (TAG) is the major carbon storage reserve in oilseeds such as Arabidopsis. Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyses the final step of the TAG synthesis pathway. Although TAG is mainly accumulated during seed development, and DGAT has presumably the highest activity in developing seeds, we show here that TAG synthesis is also actively taking place during germination and seedling development in Arabidopsis.

View Article and Find Full Text PDF