Dicentric chromosome analysis is the gold standard for biological dose assessment. To enhance the efficiency of biological dose assessment in large-scale radiation catastrophes, automatic identification of dicentric chromosome images is a promising and objective method. In this paper, an automatic identification method for dicentric chromosome images using two-stage convolutional neural network is proposed based on Giemsa-stained automatic microscopic imaging.
View Article and Find Full Text PDFCytokinesis block micronucleus (CBMN) assay is a widely used radiation biological dose estimation method. However, the subjectivity and the time-consuming nature of manual detection limits CBMN for rapid standard assay. The CBMN analysis is combined with a convolutional neural network to create a software for rapid standard automated detection of micronuclei in Giemsa stained binucleated lymphocytes images in this study.
View Article and Find Full Text PDF