Publications by authors named "Jinlang Fu"

Article Synopsis
  • The delay in healing critical bone defects is mainly caused by low oxygen levels and decreased bone-forming activity.
  • This research developed an injectable hydrogel that releases oxygen and supports bone growth by integrating specific materials like calcium peroxide and nanoparticles.
  • The hydrogel was tested on rats, showing improved bone regeneration and blood vessel formation after 8 weeks, highlighting its potential as a less invasive treatment for serious bone issues.
View Article and Find Full Text PDF

The proficient handling of diabetic wounds, a rising issue coinciding with the global escalation of diabetes cases, poses significant clinical difficulties. A range of biofunctional dressings have been engineered and produced to expedite the healing process of diabetic wounds. This study proposes a multifunctional hydrogel dressing for diabetic wound healing, which is composed of Polyvinyl Alcohol (PVA) and N-(4-boronobenzyl)-N-(4-boronophenyl)-N, N, N, N-teramethylpropane-1, 3-diaminium (TSPBA), and a dual-drug loaded Gelatin methacryloyl (GM) microgel.

View Article and Find Full Text PDF

Background: Diabetic wounds present significant challenges, specifically in terms of bacterial infection and delayed healing. Therefore, it is crucial to address local bacterial issues and promote accelerated wound healing. In this investigation, we utilized electrospinning to fabricate microgel/nanofiber membranes encapsulating MXene-encapsulated microgels and chitosan/gelatin polymers.

View Article and Find Full Text PDF

Injectable hydrogels, offering adaptable drug delivery of growth factors (GFs), hold promise for treating bone defects. To optimize osteogenic efficacy, the release of GFs should mirror the natural bone healing. We developed an injectable thermo-responsive hydrogel/microgels platform for dual GF delivery for bone regeneration.

View Article and Find Full Text PDF

Diabetic wounds pose a challenge to healing due to increased bacterial susceptibility and poor vascularization. Effective healing requires simultaneous bacterial and biofilm elimination and angiogenesis stimulation. In this study, we incorporated polyaniline (PANI) and S-Nitrosoglutathione (GSNO) into a polyvinyl alcohol, chitosan, and hydroxypropyltrimethyl ammonium chloride chitosan (PVA/CS/HTCC) matrix, creating a versatile wound dressing membrane through electrospinning.

View Article and Find Full Text PDF

Background: The occurrence of prosthesis-related complications after total shoulder arthroplasty is devastating and costly. The purpose was to determine the incidence and risk of in-hospital prosthesis-related complications after total shoulder arthroplasty utilizing a large-scale sample database.

Methods: A retrospective database analysis was performed based on Nationwide Inpatient Sample from 2010 to 2014.

View Article and Find Full Text PDF

Diabetic wounds (DW) are constantly challenged by excessive reactive oxygen species (ROS) accumulation and susceptibility to bacterial contamination. Therefore, the elimination of ROS in the immediate vicinity and the eradication of local bacteria are critical to stimulating the efficient healing of diabetic wounds. In the current study, we encapsulated mupirocin (MP) and cerium oxide nanoparticles (CeNPs) into a polyvinyl alcohol/chitosan (PVA/CS) polymer, and then a PVA/chitosan nanofiber membrane wound dressing was fabricated using electrostatic spinning, which is a simple and efficient method for fabricating membrane materials.

View Article and Find Full Text PDF

Background: Postoperative delirium (POD) is a common complication after major surgery, resulting in various adverse reactions. However, incidence and risk factors associated with POD after shoulder arthroplasty (SA) have not been well studied using a large-scale national database.

Methods: A retrospective database analysis was performed based on the Nationwide Inpatient Sample (NIS) from 2005 to 2014, the largest fully paid hospital care database in the United States.

View Article and Find Full Text PDF