We have investigated light-matter hybrid excitations in a quantum dot (QD) THz resonator coupled system. We fabricate a gate-defined QD near a THz split-ring resonator (SRR) by using a AlGaAs/GaAs two-dimensional electron system. By illuminating the system with THz radiation, the QD shows a current change whose spectrum exhibits coherent coupling between the electrons in the QD and the SRR as well as coupling between the two-dimensional electron system and the SRR.
View Article and Find Full Text PDFWe demonstrate a hybrid integrated laser by transfer printing an InAs/GaAs quantum dot (QD) amplifier on a Si waveguide with distributed Bragg reflectors (DBRs). The QD waveguide amplifier of 1.6 mm long was patterned in the form of an airbridge with the help of a spin-on-glass sacrificial layer and precisely integrated on the silicon-on-insulator (SOI) waveguide by pick-and-place assembly using an elastomer stamp.
View Article and Find Full Text PDFLight-matter interaction in the ultrastrong coupling regime is attracting considerable attention owing to its applications to coherent control of material properties by a vacuum fluctuation field. However, electrical access to such an ultrastrongly coupled system is very challenging. In this work, we have fabricated a gate-defined quantum point contact (QPC) near the gap of a terahertz (THz) split-ring resonator (SRR) fabricated on a GaAs two-dimensional (2D) electron system.
View Article and Find Full Text PDFWe have investigated the incorporation of an AlGaAs lateral potential barrier layer (LPBL) as a novel approach to improve the temperature stability of the threshold current in InAs/GaAs quantum dot (QD) lasers. This layer serves to increase the energy separation (ΔE) between the ground and excited states of the QD while maintaining efficient vertical carrier injection. Theoretical calculations confirm that the LPBL is effective in increasing ΔE.
View Article and Find Full Text PDFWe present an erratum to correct inadvertent errors in our paper [Opt. Express29, 29378 (2021)10.1364/OE.
View Article and Find Full Text PDFWith the development of dry fiber over the past two decades, the E-band has become a new telecommunication wavelength. However, owing to material constraints, an effective high-performance semiconductor light source has not yet been realized. InAs quantum dot (QD) lasers on GaAs substrates are in the spotlight as O-band light sources because of their excellent thermal properties and high efficiency.
View Article and Find Full Text PDFLaser devices for silicon photonics are expected to be implemented in an integrated environment to complement CMOS devices. For this reason, quantum dot (QD) lasers with excellent thermal properties have been considered as strong candidates for Si photonics light sources. The direct growth of QD lasers on Si (001) on-axis substrates has been garnering attention owing to the possibility of monolithic integration on a CMOS-compatible wafer.
View Article and Find Full Text PDFDirectly grown III-V quantum dot (QD) laser on on-axis Si (001) is a good candidate for achieving monolithically integrated Si photonics light source. Nowadays, laser structures containing high quality InAs / GaAs QD are generally grown by molecular beam epitaxy (MBE). However, the buffer layer between the on-axis Si (001) substrate and the laser structure are usually grown by metal-organic chemical vapor deposition (MOCVD).
View Article and Find Full Text PDF