Grain weight and size are major traits targeted in breeding to improve wheat (Triticum aestivum L.) yield. Here, we find that the histone acetyltransferase GENERAL CONTROL NONDEREPRESSIBLE 5 (GCN5) physically interacts with the calmodulin-binding transcription factor CAMTA2 and regulates wheat grain size and weight.
View Article and Find Full Text PDFWheat is a staple food for more than 35% of the world's population, with wheat flour used to make hundreds of baked goods. Superior end-use quality is a major breeding target; however, improving it is especially time-consuming and expensive. Furthermore, genes encoding seed-storage proteins (SSPs) form multi-gene families and are repetitive, with gaps commonplace in several genome assemblies.
View Article and Find Full Text PDFThis study precisely mapped and validated a quantitative trait locus (QTL) located on chromosome 4B for flag leaf angle in wheat. Flag leaf angle (FLANG) is closely related to crop architecture and yield. We previously identified the quantitative trait locus (QTL) QFLANG-4B for FLANG on chromosome 4B, located within a 14-cM interval flanked by the markers Xbarc20 and Xzyh357, using a mapping population of recombinant inbred lines (RILs) derived from a cross between Nongda3331 (ND3331) and Zang1817.
View Article and Find Full Text PDFA point mutation of RPM1 triggers persistent immune response that induces leaf premature senescence in wheat, providing novel information of immune responses and leaf senescence. Leaf premature senescence in wheat (Triticum aestivum L.) is one of the most common factors affecting the plant's development and yield.
View Article and Find Full Text PDFGrain size is one of the important traits in wheat breeding programs aimed at improving yield, and cytokinins, mainly involved in cell division, have a positive impact on grain size. Here, we identified a novel wheat gene TaMADS-GS encoding type I MADS-box transcription factor, which regulates the cytokinins signalling pathway during early stages of grain development to modulate grain size and weight in wheat. TaMADS-GS is exclusively expressed in grains at early stage of seed development and its knockout leads to delayed endosperm cellularization, smaller grain size and lower grain weight.
View Article and Find Full Text PDFGluten is composed of glutenins and gliadins and determines the viscoelastic properties of dough and end-use quality in wheat (Triticum aestivum L.). Gliadins are important for wheat end-use traits, but the contribution of individual gliadin genes is unclear, since gliadins are encoded by a complex, multigenic family, including many pseudogenes.
View Article and Find Full Text PDFWe identified ten QTLs controlling SDS-SV trait in a RIL population derived from ND3331 and Zang1817. Pinb-D1p is an elite allele from Tibetan semi‑wild wheat for good end-use quality. Gluten strength is an important factor for wheat processing and end-product quality and is commonly characterized using the sodium dodecyl sulfate-sedimentation volume (SDS-SV) test.
View Article and Find Full Text PDFAlong with increasing demands for high yield, elite processing quality and improved nutrient value in wheat, concerns have emerged around the effects of gluten in wheat-based foods on human health. However, knowledge of the mechanisms regulating gluten accumulation remains largely unexplored. Here we report the identification and characterization of a wheat low gluten protein 1 (lgp1) mutant that shows extremely low levels of gliadins and glutenins.
View Article and Find Full Text PDFIn wheat (Triticum aestivum L.), breeding efforts have focused intensively on improving grain yield and quality. For quality, the content and composition of seed storage proteins (SSPs) determine the elasticity of wheat dough and flour processing quality.
View Article and Find Full Text PDFThe function of SQUAMOSA PROMOTER-BINDING PROTEIN-BOX gene TaSPL14 in wheat is similar to that of OsSPL14 in rice in regulating plant height, panicle length, spikelet number, and thousand-grain weight of wheat, but differs during tiller development. TaSPL14 may regulate spike development via ethylene-response gene EIN3-LIKE 1 (TaEIL1), ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR 2.11 (TaRAP2.
View Article and Find Full Text PDFProtein ubiquitination is a major post-translational modification important for diverse biological processes. In wheat (Triticum aestivum) and Arabidopsis thaliana, STRESS-ASSOCIATED PROTEIN 5 (SAP5) is involved in drought tolerance, acting as an E3 ubiquitin ligase to target DRIP and MBP-1 for degradation. To identify further target proteins of SAP5, we implemented two independent approaches in this work.
View Article and Find Full Text PDFPlant Physiol
September 2019
In grass crops, leaf angle is determined by development of the lamina joint, the tissue connecting the leaf blade and sheath, and is closely related to crop architecture and yield. In this study, we identified a mutant generated by fast neutron radiation that exhibited an erect leaf phenotype caused by defects in lamina joint development. Map-based cloning revealed that the gene , encoding a SQUAMOSA PROMOTER BINDING-LIKE (SPL) protein, is deleted in this mutant.
View Article and Find Full Text PDFSeed germination is important for grain yield and quality and rapid, near-simultaneous germination helps in cultivation; however, cultivars that germinate too readily can undergo preharvest sprouting (PHS), which causes substantial losses in areas that tend to get rain around harvest time. Moreover, our knowledge of mechanisms regulating seed germination in wheat () remains limited. In this study, we analyzed function of a wheat-specific microRNA 9678 (miR9678), which is specifically expressed in the scutellum of developing and germinating seeds.
View Article and Find Full Text PDFTheor Appl Genet
April 2018
QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.).
View Article and Find Full Text PDFHistone deacetylases (HDACs) regulate histone acetylation levels by removing the acetyl group from lysine residues. The maize (Zea mays) HDACHDA101 influences several aspects of development, including kernel size; however, the molecular mechanism by which HDA101 affects kernel development remains unknown. In this study, we find that HDA101 regulates the expression of transfer cell-specific genes, suggesting that their misregulation may be associated with the defects in differentiation of endosperm transfer cells and smaller kernels observed in hda101 mutants.
View Article and Find Full Text PDFHeat stress poses a serious threat to global crop production. In efforts that aim to mitigate the adverse effects of heat stress on crops, a variety of genetic tools are being used to develop plants with improved thermotolerance. The characterization of important regulators of heat stress tolerance provides essential information for this aim.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are small, non-coding RNAs playing essential roles in plant growth, development, and stress responses. Sequencing of small RNAs is a starting point for understanding their number, diversity, expression and possible roles in plants.
Results: In this study, we conducted a genome-wide survey of wheat miRNAs from 11 tissues, characterizing a total of 323 novel miRNAs belonging to 276 families in wheat.
In spite of commercial use of heterosis in agriculture, the molecular basis of heterosis is poorly understood. It was observed that maize hybrid Zong3/87-1 exhibited an earlier onset or heterosis in radicle emergence. To get insights into the underlying mechanism of heterosis in radicle emergence, differential proteomic analysis between hybrid and its parental lines was performed.
View Article and Find Full Text PDFSmall RNAs related to RNA interference are key molecules in many developmental processes, in which they can both regulate developmental gene expression and maintain the integrity of the genome and epigenome. In plants, short interfering RNAs (siRNAs) of 24 nt in length are an abundant type of small RNA associated with transposable elements (TEs), other repetitive sequences, and viral defense. One means by which TE-associated siRNAs affect genome integrity is by altering chromatin structure through a process called RNA-directed DNA methylation (RdDM).
View Article and Find Full Text PDFDifferential gene expression between hybrids and their parents is considered to be associated with heterosis. However, the physiological functions and possible contribution to heterosis of these differentially expressed genes are unknown. We have isolated one hybrid upregulated gene encoding putative wheat ADP-ribosylation factor, designated TaARF.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are a class of small, non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. So far, identification of miRNAs has been limited to a few model plant species, such as Arabidopsis, rice and Populus, whose genomes have been sequenced. Wheat is one of the most important cereal crops worldwide.
View Article and Find Full Text PDFThree sets of data for the P1, P2, F1, and F2 populations derived from three crosses between the normal fertility wheat (Triticum aestivum L.) cultivars with different ecotypes and the female sterile line (XND126) were used to investigate the inheritance of female fertility in wheat using mixed major gene plus polygenes inheritance model in 2005 and 2006. The results from the joint segregation analysis of the four generations showed that female fertility in wheat is controlled by two major genes plus polygenes, and the interaction between the two major genes is also detected.
View Article and Find Full Text PDFIt is important to estimate the genetic diversity between the parents for improving the heterosis of hybrid wheat. In this study, ISSR(inter-simple sequence repeat) marker was used to measure the genetic diversity within and among common wheat (Triticum aestivum L.), spelt (Triticum spelta L.
View Article and Find Full Text PDF