Publications by authors named "Jinkui Wu"

The authentication of the entomological origin of honey is a widespread concern, necessitating the prompt establishment of an effective approach for distinguishing between honey (ACH) and honey (AMH). Hydroxy fatty acids (HFAs) found in honey are bee-derived components synthesized by the mandibular glands of worker bees. We previously discovered significant variations in the hydroxy fatty acid composition between ACH and AMH, suggesting their potential as indicators for identifying the authenticity of the entomological origin of honey.

View Article and Find Full Text PDF

In this paper, the ability of three selected machine learning neural and baseline models in predicting the power conversion efficiency (PCE) of organic photovoltaics (OPVs) using molecular structure information as an input is assessed. The bidirectional long short-term memory (gFSI/BiLSTM), attentive fingerprints (attentive FP), and simple graph neural networks (simple GNN) as well as baseline support vector regression (SVR), random forests (RF), and high-dimensional model representation (HDMR) methods are trained to both the large and computational Harvard clean energy project database (CEPDB) and the much smaller experimental Harvard organic photovoltaic 15 dataset (HOPV15). It was found that the neural-based models generally performed better on the computational dataset with the attentive FP model reaching a state-of-the-art performance with the test set mean squared error of 0.

View Article and Find Full Text PDF

System reliability evaluation is very important for safe operation and sustainable development of complex chemical production systems. This paper proposes a hybrid model for the reliability evaluation of chemical production systems. First, the influential factors in system reliability are categorized into five aspects: Man, Machine, Material, Management and Environment (4M1E), each of which represents a component subsystem of a complex chemical production process.

View Article and Find Full Text PDF

The alpine meadow is highly sensitive to global climate change due to its high elevation and cold environment. To understand the dynamics of ecosystem carbon cycling, CO2 fluxes were measured over the Suli alpine meadow, which is located at the upper reach of the Shule River basin at the northeastern edge of the Qinghai-Tibet Plateau (QTP), China. The measurements were taken from October 2008 to September 2012 using the eddy covariance technique.

View Article and Find Full Text PDF

We use 84 rainfall samples collected during June to September 2017 from the Dongkemadi basin, source region of the Yangtze River, China, to analyze the characteristics and influencing factors of stable isotopes in groundwater, and further discuss the groundwater recharge sources. The results showed that the range of groundwater O values in this permafrost region varied from -15.3‰ to -12.

View Article and Find Full Text PDF

Based on the stable isotopes of 73 precipitation samples continuously collected from May to October 2014 and related meteorological statistics in the Dongkemaldi Basin, the characteristics of D, O, and -excess of precipitation, as well as the correlations between O and the rainfall amount and air temperature were analyzed. The moisture sources were tracked by the HYSPLIT model to further estimate the contribution of different water vapor sources to the rainfall amount. The results showed that the range of O and D values varied from -26.

View Article and Find Full Text PDF

The mean residence time of soil water (MRT) for forestland and shrubland in a water source area of Yuanyang Terrace, southwestern China, was estimated using stable isotope tracer tests and the sine-wave regression model. Stable isotope analyses from precipitation and soil water were performed in 2015. The δH/δO relationship of precipitation resulted in δH = 7.

View Article and Find Full Text PDF

To analyze the hydrochemical characteristics of river water and snow meltwater during snow-melting period in the Kayiertesi River, the headwaters of the Ertis River, samples of river water and meltwater were collected every day during March and April, 2014. Furthermore, the combination of descriptive statistics, Gibbs Figure and Piper Triangular diagrams of anions and cations were used for hydrochemical analyses. The results showed that the major ion compositions and hydrochemical types were significantly different between river water and snow meltwater.

View Article and Find Full Text PDF

Stable isotope techniques provide a new approach to study soil water movement. The precipitation and the soil water from 0 to 100 cm soil layer in 4 kinds of typical vegetation types (forest, shrub forest, grassland and non-forest land) over the water source area of Yuanyang terrace were sampled, and their isotope compositions were analyzed, aimed to understand the characteristics of stable isotopes in different depth of the soil water. The results showed that the meteoric water line in the water source area of Yuanyang terrace was δD = 6.

View Article and Find Full Text PDF

To analyze the major ion chemistry of water in the upper reach of the Shule River Basin and possible controls, samples of river water, groundwater, precipitation, melt water were collected and methods including descriptive statistics, Gibbs Figure, Piper Triangular diagrams of anions and cations were comprehensive used. Results showed that the major ion compositions and hydrochemical types were significantly different in different waters such as stream water, groundwater and precipitation. The total dissolved solid (TDS) in the river water ranges between 51.

View Article and Find Full Text PDF

Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in the steppe region in Inner Mongolia is urgently needed. Major ions are widely used to identify the hydrological processes in a river basin. Based on the analysis results of 239 river water samples collected in 13 sections along the Xilin River system during 2006 to 2008, combined with data from groundwater and precipitation samples collected in the same period and the meteorological and hydrological data in the Xilin River Basin, hydrochemical characteristics and the chemistry of major ions of the Xilin River water have been studied by means of Piper triangle plots and Gibbs diagrams.

View Article and Find Full Text PDF

In order to better understand the hydrological process in Xilin River Basin, 248 water samples were collected in 13 sections (10 were at the mainstream and 3 were at the three tributaries) over the Xilin River during 2006-2008 and thereafter analyzed by high resolution inductively coupled plasma mass spectrometry (ICP-MS) for 20 trace elements. The temporal and spatial distribution characteristics of trace elements were obtained. The results showed that the average concentration values of trace elements were 0.

View Article and Find Full Text PDF

To study the variations of deltaD and delta18O in precipitation, 301 samples were sampled during 2002-2004 in 6 sites in the Heihe River basin, Northwestern China. The deltaD and delta18O values ranged from 59 per thousand to -254 per thousand and 6.5 per thousand to -33.

View Article and Find Full Text PDF

Investigation of meltwater chemistry may provide information to understand the significance of glacier in estimating of water provenance. Most notably, the role of electrical conductivity (EC) variation in meltwater during glacier melting season has attracted considerable attention, since this may reflect the water flux. Analyses for pH and EC in 229 bulk meltwater samples have provided information about water provenance at Dongkemadi Glacier basin, an outlet tongue from the Tanggula Pass, Tibetan Plateau.

View Article and Find Full Text PDF