Background: Soy protein isolate (SPI) has poor emulsifying ability because of its low molecular flexibility and compact structure, limiting its application in extruded protein-based foods. Extrusion technology has emerged as a promising way to alter the structural properties of proteins. Therefore, the impacts of grape seed proanthocyanidin (GSP) on structural and emulsifying characteristics of SPI in extrusion field were explored in this study.
View Article and Find Full Text PDFEffects of polyphenols including caffeic acid (CA), ferulic acid (FA), epigallocatechin gallate (EG), tannic acid (TA) and resveratrol (R) on physicochemical and structural properties of rice starch (RS) under the extrusion condition were investigated. Extrusion altered the hydration, pasting and rheological properties of rice starch. Adding FA exhibited the best improvement effect on hydration properties of extruded rice starch (E-RS).
View Article and Find Full Text PDFReconstituted rice was prepared by extrusion with different feed moistures (30 %, 33 %, 36 %, 39 % and 42 %), and the relationship between the crystalline structure, physicochemical properties, and textual quality of reconstituted rice was studied. The results revealed that, with the feed moisture increased (33 %-36 %), the gelatinization degree reached 97.28 % and the bound water content increased by 23.
View Article and Find Full Text PDFTo increase the anti-digestion ability of extruded rice starch (ERS), the influence of rice glutelin (RG) on digestive and structural characteristics of ERS were investigated. The resistant starch content increased from 4.49 % to 18.
View Article and Find Full Text PDFRice Bran (RB) was added to soybean protein isolate (SPI) at 0%, 5%, 10%, 15% and 20% as addition to produce simulated meat by high moisture extrusion, and the apparent properties and structural characteristics of RB-SPI simulated meat were studied. The addition of 10% RB weakened the interaction among hydrogen bond (HB), hydrophobic bond (HI) and disulfide bond (DB), further increasing the hardness of simulated meat. Meanwhile, it decreased the content of intermolecular hydrogen bonding and enhanced the interaction between HI and HB, resulted in an increased tension.
View Article and Find Full Text PDF