A protocol for the synthesis of 2-(2-nitrophenyl)indoline-3-acetic acid derivatives was developed base-catalyzed cyclization of -(2-nitrobenzyl)-2-aminocinnamic acid derivatives. The synthetic utility of this methodology was illustrated by the concise synthesis of dihydropaullone, a partially saturated analog of paullone. Furthermore, the indoline scaffold could be further converted to the corresponding indoles and other indole-fused heterocycles.
View Article and Find Full Text PDFTwo routes toward the synthesis of rucaparib, an FDA-approved drug used for the treatment of ovarian and prostate cancers, have been developed from commercially available starting materials utilizing the cyanide-catalyzed imino-Stetter reaction as the key step for the construction of the indole motif bearing all the desired substituents in their correct positions. In the first-generation synthesis, -fluorobenzoate, the starting material currently used in the process chemistry route of rucaparib, was converted into 4,6-disubstituted 2-aminocinnamic acid derivatives (ester or amide). The cyanide-catalyzed imino-Stetter reaction of aldimines derived from the resulting 2-aminocinnamic acid derivatives and a commercially available aldehyde afforded the desired indole-3-acetic acid derivatives.
View Article and Find Full Text PDFA concise total synthesis of rucaparib, an FDA-approved drug for ovarian and prostate cancers, is reported. The Heck reaction of the commercially available aryl iodide with acrylonitrile provided the desired ()-2-aminocinnamonitrile derivative. A subsequent imino-Stetter reaction of the aldimine derived from 2-aminocinnamonitrile and aldehyde furnished indole-3-acetonitrile bearing the desired substituents at appropriate positions.
View Article and Find Full Text PDF