Publications by authors named "Jinhyeong Kwon"

Manufacturing strategies to create three-dimensional (3D) structures with multifunctional nanomaterials are of intense interest for fabricating building blocks in many electromechanical applications. A coil spring composed of graphene provides an important step toward the realization of all-carbon devices, as it is one of the essential elements for a wide range of systems. In this connection, here an unprecedented fabrication strategy to create a new type of 3D coil spring composed of laser-induced graphene springs (LIG-S) which is spontaneously produced via the pyrolytic jetting technique, is presented.

View Article and Find Full Text PDF
Article Synopsis
  • Physical unclonable functions (PUFs) are being developed as a superior alternative for information security, as they generate unique cryptographic keys that cannot be replicated, although traditional PUFs face limitations like fixed keys and slower authentication with larger datasets.
  • The new supersaturated solution-based PUF (S-PUF) improves the authentication process by using sodium acetate crystallization, allowing for quicker, hierarchical authentication and the ability to rewrite cryptographic keys on demand.
  • By manipulating the temperature to control crystal characteristics and including global parameters like angle of rotation, the S-PUF enhances the cryptographic key generation process, paving the way for a more flexible and efficient anti-counterfeiting solution.
View Article and Find Full Text PDF

Herein, a facile fabrication process of ZnO-ZnFeO hollow nanofibers through one-needle syringe electrospinning and the following calcination process is presented. The various compositions of the ZnO-ZnFeO nanofibers are simply created by controlling the metal precursor ratios of Zn and Fe. Moreover, the different diffusion rates of the metal oxides and metal precursors generate a hollow nanostructure during calcination.

View Article and Find Full Text PDF

Evolution has decided to gift an articular structure to vertebrates, but not to invertebrates, owing to their distinct survival strategies. An articular structure permits kinematic motion in creatures. However, it is inappropriate for creatures whose survival strategy depends on the high deformability of their body.

View Article and Find Full Text PDF

The advent of soft robotics has led to great advancements in robots, wearables, and even manufacturing processes by employing entirely soft-bodied systems that interact safely with any random surfaces while providing great mechanical compliance. Moreover, recent developments in soft robotics involve advances in transparent soft actuators and sensors that have made it possible to construct robots that can function in a visually and mechanically unobstructed manner, assisting the operations of robots and creating more applications in various fields. In this aspect, imperceptible soft robotics that mainly consist of optically transparent imperceptible hardware components is expected to constitute a new research focus in the forthcoming era of soft robotics.

View Article and Find Full Text PDF

Generally, a high-temperature postannealing process is required to enhance the photoelectrochemical (PEC) performance of hematite nanorod (NR) photoanodes. However, the thermal annealing time is limited to a short duration as thermal annealing at high temperatures can result in some critical problems, such as conductivity degradation of the fluorine-doped tin oxide film and deformation of the glass substrate. In this study, selective laser processing is introduced for hematite-based PEC cells as an alternative annealing process.

View Article and Find Full Text PDF

Research on sustainable and high-efficiency energy devices has recently emerged as an important global issue. These devices are now moving beyond the form of a bulk, rigid platform to a portable, flexible/stretchable format that is easily available in our daily lives. Similar to the development of an active layer for the production of next-generation energy devices, the fabrication of flexible/stretchable electrodes for the easy flow of electrons is also very important.

View Article and Find Full Text PDF

Active control of transparency/color is the key to many functional optoelectric devices. Applying an electric field to an electrochromic or liquid crystal material is the typical approach for optical property control. In contrast to the conventional electrochromic method, we developed a new concept of smart glass using new driving mechanisms (based on mechanical stimulus and thermal energy) to control optical properties.

View Article and Find Full Text PDF

Transparency in electronics can provide extra functionality and esthetic impression. Transparency plays an important role in accurate soft robot control because one can directly observe target surface condition that is usually blocked by a robot's body. Nowadays, demand for soft actuators has been rapidly increasing because soft robots have attracted much attention recently.

View Article and Find Full Text PDF

Flexible micro/nano metal grid transparent conductors emerged as an alternative to the fragile/rigid indium tin oxide electrode. They are usually fabricated by the combination of the conventional photolithography and the vacuum deposition of regular metal grid patterns, however, seriously suffer from moiré and starburst problems induced by periodic regular pattern structures. In this paper, we demonstrated flexible and imperceptible random copper microconductors with an extremely high figure-of-merit (∼2000) by the thermal conduction layer-assisted photonic sintering of copper nanoparticles without damages in the plastic substrate.

View Article and Find Full Text PDF

Selective laser sintering of metal nanoparticle ink is a low-temperature and non-vacuum technique developed for the fabrication of patterned metal layer on arbitrary substrates, but its application to a metal layer composed of large metal area with small voids is very much limited due to the increase in scanning time proportional to the metal pattern density. For the facile manufacturing of such metal layer, we introduce micropatterning of metal nanoparticle ink based on laser-induced thermocapillary flow as a complementary process to the previous selective laser sintering process for metal nanoparticle ink. By harnessing the shear flow of the solvent at large temperature gradient, the metal nanoparticles are selectively pushed away from the scanning path to create metal nanoparticle free trenches.

View Article and Find Full Text PDF

In this Letter, we report the development of a continuously tunable color filter based on a self-assembled isotropically stretchable microbead monolayer. Spreading equidistantly upon the application of lateral strain, the isotropically stretchable monolayer serves as a dynamic diffraction grating whose diffraction angle can be mechanically modulated. Combined with a simple spatial filtering scheme, the spectra of the filtered light are solely controlled by external strain (up to 32% radial strain) to cover a broad visible spectrum.

View Article and Find Full Text PDF

To date, solar energy generation devices have been widely studied to meet a clean and sustainable energy source. Among them, water splitting photoelectrochemical cell is regarded as a promising energy generation way for splitting water molecules and generating hydrogen by sunlight. While many nanostructured metal oxides are considered as a candidate, most of them have an improper bandgap structure lowering energy transition efficiency.

View Article and Find Full Text PDF

Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate.

View Article and Find Full Text PDF

Exploration of the electronics solely composed of bottom-up synthesized nanowires has been largely limited due to the complex multistep integration of diverse nanowires. We report a single-step, selective, direct, and on-demand laser synthesis of a hierarchical heterogeneous nanowire-on-nanowire structure (secondary nanowire on the primary backbone nanowire) without using any conventional photolithography or vacuum deposition. The highly confined temperature rise by laser irradiation on the primary backbone metallic nanowire generates a highly localized nanoscale temperature field and photothermal reaction to selectively grow secondary branch nanowires along the backbone nanowire.

View Article and Find Full Text PDF
Article Synopsis
  • Air quality issues in Asia, particularly in China, Korea, and India, are largely due to particulate matter, especially PM2.5.
  • The Ag nanowire percolation network has been developed as a novel, transparent, reusable air filter that effectively captures PM2.5 using strong electrostatic forces.
  • This innovative filter is highly efficient (>99.99%), low-power, antibacterial, and suitable for applications in wearable electronics.
View Article and Find Full Text PDF

Controlling the surface morphology of the electrode on the nanoscale has been studied extensively because the surface morphology of a material directly leads to the functionalization in various fields of studies. In this study, we designed a simple and cost-effective method to fine-tune the surface morphology and create controlled nanopores on the silver electrode by utilizing 2-ethoxyethanol and two successive heat treatments. High electrical conductivity and mechanical robustness of nanoporous silver corroborate its prospect to be employed in various applications requiring a certain degree of flexibility.

View Article and Find Full Text PDF

Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector.

View Article and Find Full Text PDF

Stretchable and transparent electronics have steadily attracted huge attention in wearable devices. Although Ag nanowire is the one of the most promising candidates for transparent and stretchable electronics, its electrochemical instability has forbidden its application to the development of electrochemical energy devices such as supercapacitors. Here, we introduce a highly stretchable and transparent supercapacitor based on electrochemically stable Ag-Au core-shell nanowire percolation network electrode.

View Article and Find Full Text PDF

Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis.

View Article and Find Full Text PDF

Generally, a fracture is considered as an uncontrollable thus useless phenomenon due to its highly random nature. The aim of this study is to investigate highly ordered cracks such as oscillatory cracks and to manipulate via elaborate control of mechanical properties of the cracking medium including thickness, geometry, and elastic mismatch. Specific thin film with micro-sized notches was fabricated on a silicon based substrate in order to controllably generate self-propagating cracks in large area.

View Article and Find Full Text PDF

A highly stretchable and transparent electrical heater is demonstrated by constructing a partially embedded silver nanowire percolative network on an elastic substrate. The stretchable network heater is applied on human wrists under real-time strain, bending, and twisting, and has potential for lightweight, biocompatible, and versatile wearable applications.

View Article and Find Full Text PDF

A single nanowire resistive nano-heater (RNH) is fabricated, and it is demonstrated that the RNH can induce highly localized temperature fields, which can trigger highly localized thermo-chemical reactions to grow hierarchical nanowires directly at the desired specific spot such as ZnO nanowire branch growth on a single Ag nanowire.

View Article and Find Full Text PDF

A facile fast laser nanoscale welding process uses the plasmonic effect at a nanowire (NW) junction to suppress oxidation and successfully fabricate a Cu-NW-based percolation-network conductor. The "nanowelding" process does not require an inert or vacuum environment. Due to the low-temperature and fast-process nature, plasmonic laser nanowelding may form Cu-nanowire networks on heat-sensitive, flexible or even stretchable substrates.

View Article and Find Full Text PDF

Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature.

View Article and Find Full Text PDF