High-performance electromagnetic interference (EMI) shielding materials with high flexibility, low density, and hydrophobic surface are crucial for modern integrated electronics and telecommunication systems in advanced industries like aerospace, military, artificial intelligence, and wearable electronics. In this study, we present flexible and hydrophobic MXene/Ni-coated polyester (PET) fabrics featuring a double-layered structure, fabricated via a facile and scalable dip-dry coating process followed by electroless nickel plating. Increasing the dip-dry coating iterations up to 10 cycles boosts the MXene loading content (∼31 wt %) and electrical conductivity (∼86 S/cm) of MXene-coated PET fabrics, while maintaining constant porosity (∼95%).
View Article and Find Full Text PDFNanoporous membranes have a variety of applications, one of which is the size-selective separation of nanoparticles. In drug delivery, nanoporous membranes are becoming increasingly important for the isolation of exosomes, which are bio-nanoparticles. However, the low pore density and thickness of commercial membranes limit their efficiency.
View Article and Find Full Text PDFDeep reinforcement learning (DRL) is a powerful approach that combines reinforcement learning (RL) and deep learning to address complex decision-making problems in high-dimensional environments. Although DRL has been remarkably successful, its low sample efficiency necessitates extensive training times and large amounts of data to learn optimal policies. These limitations are more pronounced in the context of multi-agent reinforcement learning (MARL).
View Article and Find Full Text PDFTwo-dimensional (2D) membranes enable ion-sieving through well-defined subnanoscale channels. In particular, graphene oxide (GO), a representative 2D material with a flexible structure, can be manufactured into various types of membranes, while defects such as pores and wrinkles are readily formed through self-aggregation and self-folding during membrane fabrication. Such defects provide a path for small ionic or molecular species to be easily penetrated between the layers, which deteriorates membrane performance.
View Article and Find Full Text PDFHealthc Inform Res
January 2022
Objective: This study was conducted to develop a generalizable annotation tool for bilingual complex clinical text annotation, which led to the design and development of a clinical text annotation tool, ANNO.
Methods: We designed ANNO to enable human annotators to support the annotation of information in clinical documents efficiently and accurately. First, annotations for different classes (word or phrase types) can be tagged according to the type of word using the dictionary function.
Background: To date, investigating respiratory disease patients visiting the emergency departments related with fined dust is limited. This study aimed to analyze the effects of two variable-weather and air pollution on respiratory disease patients who visited emergency departments.
Methods: This study utilized the National Emergency Department Information System (NEDIS) database.
Micromachines (Basel)
February 2021
We fabricated transparent and flexible silicon oxycarbide (SiOC) hard coating (HC) films on a colorless polyimide substrate to use as cover window films for flexible and foldable displays using a reactive roll-to-roll (R2R) sputtering system at room temperature. At a SiOC thickness of 100 nm, the R2R-sputtered SiOC film showed a high optical transmittance of 87.43% at a visible range of 400 to 800 nm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
With rapid advances in flexible electronics, transparent conductive electrodes (TCEs) have also been significantly developed as alternatives to the conventional indium tin oxide (ITO)-based material systems that exhibit low mechanical flexibility. Nanomaterial-based alternating materials, such as graphene, nanowire, and nanomesh, exhibit remarkable properties for TCE-based applications, such as high electrical conductivity, high optical transparency, and high mechanical stability. However, these nanomaterial-based systems lack scalability, which is a key requirement for practical applications, and exhibit a size-dependent property variation and inhomogeneous surface uniformity that limit reliable properties over a large area.
View Article and Find Full Text PDFTo have an objective depression diagnosis, numerous studies based on machine learning and deep learning using electroencephalogram (EEG) have been conducted. Most studies depend on one-dimensional raw data and required fine feature extraction. To solve this problem, in the EEG visualization research field, short-time Fourier transform (STFT), wavelet, and coherence commonly used as method s for transferring EEG data to 2D images.
View Article and Find Full Text PDFBackground: Clinical Decision Support Systems (CDSSs) have recently attracted attention as a method for minimizing medical errors. Existing CDSSs are limited in that they do not reflect actual data. To overcome this limitation, we propose a CDSS based on deep learning.
View Article and Find Full Text PDFWe investigated the electrical, optical and mechanical properties of silver (Ag) nanowire (NW) embedded into a silk fibroin (SF) substrate to create high performance, flexible, transparent, biocompatible, and biodegradable heaters for use in wearable electronics. The Ag NW-embedded SF showed a low sheet resistance of 15 Ω sq, high optical transmittance of 85.1%, and a small inner/outer critical bending radius of 1 mm.
View Article and Find Full Text PDFObjectives: Breast cancer is the second most common cancer among Korean women. Because breast cancer is strongly associated with negative emotional and physical changes, early detection and treatment of breast cancer are very important. As a supporting tool for classifying breast cancer, we tried to identify the best meta-learner model in a stacking ensemble when the same machine learning models for the base learner and meta-learner are used.
View Article and Find Full Text PDF