Publications by authors named "Jinhwan Lim"

Prior studies showed that mice deficient in the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in synthesis of the thiol antioxidant glutathione, have decreased ovarian glutathione concentrations, chronic ovarian oxidative stress, poor oocyte quality resulting in early preimplantation embryonic mortality and decreased litter size, and accelerated age-related decline in ovarian follicle numbers. Global deficiency of the catalytic subunit of this enzyme, Gclc, is embryonic lethal. We tested the hypothesis that granulosa cell- or oocyte-specific deletion of Gclc recapitulates the female reproductive phenotype of global Gclm deficiency.

View Article and Find Full Text PDF

People are widely exposed to polycyclic aromatic hydrocarbons, like benzo[a]pyrene (BaP). Prior studies showed that prenatal exposure to BaP depletes germ cells in ovaries, causing earlier onset of ovarian senescence post-natally; developing testes were affected at higher doses than ovaries. Our primary objective was to determine if prenatal BaP exposure results in transgenerational effects on ovaries and testes.

View Article and Find Full Text PDF

Cannabis use by adolescents is widespread, but its effects on the ovaries remain largely unknown. Δ9-tetrahydrocannabinol (THC) exerts its pharmacological effects by activating, and in some conditions hijacking, cannabinoid receptors (CBRs). We hypothesized that adolescent exposure to THC affects ovarian function in adulthood.

View Article and Find Full Text PDF

The endocannabinoid system (ECS) is comprised of a set of lipid-derived messengers (the endocannabinoids, ECBs), proteins that control their production and degradation, and cell-surface cannabinoid (CB) receptors that transduce their actions. ECB molecules such as 2-arachidonoyl--glycerol (2-AG) and anandamide (arachidonoyl ethanolamide) are produced on demand and deactivated through enzymatic actions tightly regulated both temporally and spatially, serving homeostatic roles in order to respond to various challenges to the body. Key components of the ECS are present in the hypothalamus-pituitary-gonadal (HPG) axis, which plays critical roles in the development and regulation of the reproductive system in both males and females.

View Article and Find Full Text PDF

Background: Fine particulate matter (PM) exposure accelerates atherosclerosis and contains known ovotoxic chemicals. However, effects of exposure to PM on the finite ovarian follicle pool have hardly been investigated, nor have interactions between ovarian and cardiovascular effects. We hypothesized that subchronic inhalation exposure to human-relevant concentrations of PM results in destruction of ovarian follicles via apoptosis induction, as well as accelerated recruitment of primordial follicles into the growing pool.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons like benzo[a]pyrene (BaP) are generated during incomplete combustion of organic materials. Prior research has demonstrated that BaP is a prenatal ovarian toxicant and carcinogen. However, the metabolic pathways active in the embryo and its developing gonads and the mechanisms by which prenatal exposure to BaP predisposes to ovarian tumors later in life remain to be fully elucidated.

View Article and Find Full Text PDF

The effect of thermal cycling on the transformation behavior of a Ti-24Nb-1Mo alloy was investigated by means of electrical resistivity measurement, transmission electron microscopy (TEM), X-ray diffraction (XRD), tensile test and Vickers hardness tests. Electrical resistivity changes were not observed in all alloys. It indicates that thermally induced martensitic transformation does not take place in the alloys.

View Article and Find Full Text PDF

The tripeptide thiol antioxidant glutathione (GSH) has multiple physiological functions. Female mice lacking the modifier subunit of glutamate cysteine ligase (GCLM), the rate-limiting enzyme in GSH synthesis, have decreased GSH concentrations, ovarian oxidative stress, preimplantation embryonic mortality, and accelerated age-related decline in ovarian follicles. We hypothesized that supplementation with thiol antioxidants, N-acetyl cysteine (NAC), or α-lipoic acid (ALA) will rescue this phenotype.

View Article and Find Full Text PDF

BACE1 is the rate-limiting enzyme for amyloid-β peptides (Aβ) generation, a key event in the pathogenesis of Alzheimer's disease (AD). By an unknown mechanism, levels of and a mRNA-stabilizing antisense RNA () are elevated in the brains of AD patients, implicating that dysregulation of expression plays an important role in AD pathogenesis. We found that nuclear factor erythroid-derived 2-related factor 2 (NRF2/NFE2L2) represses the expression of and through binding to antioxidant response elements (AREs) in their promoters of mouse and human.

View Article and Find Full Text PDF

Mice lacking the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in glutathione (GSH) synthesis, have decreased tissue GSH. We previously showed that Gclm-/- embryos have increased sensitivity to the prenatal in vivo ovarian toxicity of the polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) compared with Gclm+/+ littermates. We also showed that BaP-induced germ cell death in cultured wild type embryonic ovaries is caspase-dependent.

View Article and Find Full Text PDF

The polycyclic aromatic hydrocarbon pollutant benzo[a]pyrene (BaP) is a known developmental gonadotoxicant. However, the mechanism of BaP-induced germ cell death is unclear. We investigated whether exposure to BaP induces apoptotic germ cell death in the mouse fetal ovary or testis.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons, like benzo[a]pyrene (BaP), are ubiquitous environmental pollutants and potent ovarian toxicants. The transcription factor NRF2 is an important regulator of the cellular response to electrophilic toxicants like BaP and to oxidative stress. NRF2 regulates transcription of genes involved in the detoxification of reactive metabolites of BaP and reactive oxygen species.

View Article and Find Full Text PDF

Glutathione (GSH) is the one of the most abundant intracellular antioxidants. Mice lacking the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH. Our prior work showed that GSH plays antiapoptotic roles in ovarian follicles.

View Article and Find Full Text PDF

A Ti-Ni alloy compositionally graded along the thickness direction in order to obtain a shape change over a wide temperature range, which is beneficial to the actuator for precise position control, was prepared by spark plasma sintering (SPS) after stacking Ti-Ni alloy ribbons in the sequence of Ti-51Ni, Ti-50Ni, Ti-49Ni and Ti-48Ni (at%) followed by annealing. Then, the microstructure and martensitic transformation behavior were investigated by using FE-SEM, DSC and thermal cycling tests under a constant load. The inter-ribbon defects observed after SPS due to insufficient diffusional bonding between the ribbons were eliminated by post-SPS annealing at 1023 K for 36 ks.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (BaP) are ubiquitous environmental pollutants found in tobacco smoke, air pollution, and grilled foods. Prenatal exposure to BaP causes premature reproductive senescence in mice, and other PAHs are transplacental ovarian carcinogens. Glutathione (GSH) is critical for detoxification of the reactive metabolites of PAHs.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) modulate aging and aging-related diseases. Dietary composition is critical in modulating lifespan. However, how ROS modulate dietary effects on lifespan remains poorly understood.

View Article and Find Full Text PDF

Glutathione (GSH) is the most abundant intracellular thiol and an important regulator of cellular redox status. Mice that lack the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH synthesis. Nicotinamide nucleotide transhydrogenase, an inner mitochondrial membrane protein, catalyzes the interconversion of reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate; reduced nicotinamide adenine dinucleotide phosphate is required for reduction of GSH disulfide.

View Article and Find Full Text PDF

Background/aims: Phototherapy using a narrow-band, near-infrared (NIR) light (using a light-emitting diode, LED) is being used to treat certain medical conditions. This narrow-band red light has been shown to stimulate cytochrome c oxidase (CCO) in mitochondria that would stimulate ATP production and has the ability to stimulate wound healing. LED treatment also decreases chemical-induced oxidative stress in tested systems.

View Article and Find Full Text PDF

Oxidative stress has been implicated in various aspects of aging, but the role of oxidative stress in ovarian aging remains unclear. Our previous studies have shown that the initiation of apoptotic cell death in ovarian follicles and granulosa cells by various stimuli is initiated by increased reactive oxygen species. Herein, we tested the hypothesis that ovarian antioxidant defenses decrease and oxidative damage increases with age in mice.

View Article and Find Full Text PDF

Hyperglycemia causes oxidative damage in tissues prone to complications in diabetes. Low-level light therapy (LLLT) in the red to near infrared range (630-1000nm) has been shown to accelerate diabetic wound healing. To test the hypothesis that LLLT would attenuate oxidative renal damage in Type I diabetic rats, male Wistar rats were made diabetic with streptozotocin (50mg/kg, ip), and then exposed to 670nm light at a dose of 9J/cm(2) once per day for 14weeks.

View Article and Find Full Text PDF

Diabetes causes oxidative stress in the liver and other tissues prone to complications. Photobiomodulation by near infrared light (670 nm) has been shown to accelerate diabetic wound healing, improve recovery from oxidative injury in the kidney, and attenuate degeneration in retina and optic nerve. The present study tested the hypothesis that 670 nm photobiomodulation, a low-level light therapy, would attenuate oxidative stress and enhance the antioxidant protection system in the liver of a model of type I diabetes.

View Article and Find Full Text PDF

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent developmental teratogen inducing oxidative stress and sublethal changes in multiple organs, provokes developmental renal injuries. In this study, we investigated TCDD-induced biochemical changes and the therapeutic efficacy of photobiomodulation (670 nm; 4 J/cm(2)) on oxidative stress in chicken kidneys during development. Eggs were injected once prior to incubation with TCDD (2 pg/g or 200 pg/g) or sunflower oil vehicle control.

View Article and Find Full Text PDF

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an acutely toxic anthropogenic chemical. Treatment with a red to near-infrared (630-1000 nm) light-emitting diode (LED) attenuates the toxicant-induced oxidative stress and energy deficit in neuronal cell culture. For this study, fertile chicken (Gallus gallus) eggs were injected once at the start of incubation with sunflower oil vehicle or 200 pg TCDD/g egg (200 parts per trillion), an environmentally relevant dose.

View Article and Find Full Text PDF

Objective: We assessed the effect of 670-nm light therapy on growth and hatching kinetics in chickens (Gallus gallus) exposed to dioxin.

Background Data: Photobiomodulation has been shown to stimulate signaling pathways resulting in improved energy metabolism, antioxidant production, and cell survival. In ovo treatment with 670-nm light-emitting diode (LED) arrays improves hatching success and increases hatchling size in control chickens.

View Article and Find Full Text PDF

This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as "photobiomodulation," uses light in the far-red to near-infrared region of the spectrum (630-1000 nm) and modulates numerous cellular functions. Positive effects of NIR-light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production.

View Article and Find Full Text PDF